选择特殊符号
选择搜索类型
请输入搜索
机房氨液分离器管道简易型是一种用于小系统的简易方案,这里省去了贮存低压液体的贮液器,库房氨液分离器未能分出的液体被临时贮存于其中,待液位达到上限时暂时停止压缩机运行,对其加压将液体排入排液桶。
机房氨液分离器的形式有两种。机房氨液分离器管道连接是比较完善的一种形式,气液混合物进入氨液分离器,氨液再由重力作用流入低压贮液器,并被贮存于其中,气体被制冷压缩机吸去,当低压贮液器达到上限时,应关闭低压贮液器上的进液管和均压管,并开启出液管和加压管,利用高压气体的压力输送低压液体进入排液桶。设计这种系统应注意的是,液管应该用最短和最少的弯头、并使阀门与氨液分离器相连。
另外,它的管径应大于D108mm以确保氨液下流畅通。氨液分离器与低压贮液器间的均压管不可省去,用于低压贮液器的加压热氨引自油分离器出气口,以避免将润滑油带入其中。排液应排入排液桶,如果直接排入供液管则会延长排液时间,使氨液分离器内积存过多的液体。
旋风分离器原理就是使含有粉尘的气体沿切线方向进入分离器,在特殊的流道设计下,气流由上至下做回转运动,在回转过程中,粉尘因密度大于气体,所受离心力较大而被“甩”到外围,沿器壁在向下的气流和重力的共同作用...
液体分离器价格是421元。液体分离器有两种。一种立式液体分离器,蒸发器排出的气体进入立式圆筒后,流速迅速降低(一般在1m/s以下),依靠重力实现气液分离。分离后的液体贮存于容器的底部。一种卧式液体分离...
各厂家生产的不同品牌的分水器价格有很大差异。有黄铜材质的,高档一点的有镀钛金的等等。 各品牌一般都是以路为单位计算价格的,一般材质的从55元/路---125元/路;高档的从150元/----225元...
气液分离器设计算表
N2 H3= 300 mm N1 H2= 150 mm W V= kg/h W L= kg/h H1= 1182 mm QV= m 3/h QL= m 3/h HL= 18 mm 1 1 D= 450 mm 51% N3 立式气-液分离器工艺计算 气相 混合进料 1500.0 150.0 322.6 0.2 ┈┈┈┈┈┈┈┈┈┈┈ 操作分析: ◆约为 允许气速 操作量适中 , 分离良好 液相 已经破解了vba密码 已经破解了其中的表格锁定 1、 KS 0.0072 KV 0.2643 KVDsn 0.2643 UVmax 1.113 m/s UVDsn 0.946 m/s 2、 Avmin 0.095 m2 Dmin 348 mm D 450 mm AV 0.159 m2 UV 0.563 m/s 3、 tB 1 min QLB 0.00
立式气-液分离器设计
用于 1、 2、 3、 4、 5、 手动 1、 2、 3、校核输入 自动 1、 2、 3、结果分析 按钮 1、 2、 3、 4、 5、 6、 注意 参考 1、 估算进出管口尺寸。 操作分析:改变进料量、密度、停留时间 HG/T 20570.8-95 气-液分离器设计 功能2、4为不可逆操作,不能通过撤消返回上一 立式气-液分离器工艺计算 查表或取值输入 修改设定值 已知进料气液相流量及密度,求算分离器 估算正常操作最高液位,供液位控制参考 设计分析:改变进料量、密度、停留时间 随意插入和删除行、列、单元格或修改 [调试 ][ 隐藏 ]:展开或隐藏计算及设定细 [重新计算 ]:清空设计计算输入的全部工 [结束 ]:清空上一步输入的操作校核数据 [恢复默认 ]:将框内设计参数恢复为默认 在开始设计计算后可以随时 (部分手动框选定后有提示 (部分自动框选定后有提示 必须
机房氨液分离器管道连接是比较完善的一种形式,气液混合物进入氨液分离器,氨液再由重力作用流入低压贮液器,并被贮存于其中,气体被制冷压缩机吸去,当低压贮液器达到上限时,应关闭低压贮液器上的进液管和均压管,并开启出液管和加压管,利用高压气体的压力输送低压液体进入排液桶。设计这种系统应注意的是,液管应该用最短和最少的弯头、并使阀门与氨液分离器相连,另外,它的管径应大于D108mm以确保氨液下流畅通。氨液分离器与低压贮液器间的均压管不可省去,用于低压贮液器的加压热氨引自油分离器出气口,以避免将润滑油带入其中。排液应排入排液桶,如果直接排入供液管则会延长排液时间,使氨液分离器内积存过多的液体。
①机房氨液分离器管道简易型是一种用于小系统的简易方案,这里省去了贮存低压液体的贮液器,库房氨液分离器未能分出的液体被临时贮存于其中,待液位达到上限时暂时停止压缩机运行,对其加压将液体排入排液桶。
用于回气二次分离的氨液分离器,不需要向其内部供液,这是与一次分离氨液器所不同的。
② 氨液分离器与蒸发器间高度差的确定。在工程设计中氨液分离器与蒸发器之间的高度差需根据蒸发器和进液管对制冷剂的阻力状况来确定。过小的高度差会使供液不足;过高的压力差又会影响蒸发器内制冷剂的蒸发温度。因此,为了保证既能向蒸发器正常供液,又不至于严重影响蒸发温度,原则上讲,该高差形成的静压在克服了总阻力之后,剩余压差对蒸发温度的影响不超多1℃.表1-2是液柱高度对蒸发温度的影响,由表可见,在低温系统中液柱对蒸发温度的影响更大,因此是极不经济的。为了减少液柱对蒸发温度的影响,高度相差较大的蒸发器分别设置氨液分离器,一般情况下氨液分离器的液面高于蒸发器最上层管子1~2m为好,常取1.5M.氨液分离器出液管的横截面积为进液管的两倍左右。当采用D38mm管组成冷却排管时,每一供液路地长度不得超过120mm。
2.重力供液的优缺点
①由于采用氨液分离器,在蒸发器负荷比较稳定的情况下避免了压缩机发生湿行程;但是当负荷剧烈变化或制冷压缩机工作点选择不当时,由于二次液体的增多,氨液分离器的正常液位难于稳定,制冷压缩机还是有发生湿压缩的可能。
②高压氨液节流后产生的闪发气体被彻底分离,进图蒸发器的是完全的液体,避免了闪发气体对传热的影响,蒸发器能够发挥比较大的效能。
③在蒸发器组数不多的小型制冷装置中,一方面采用均匀配管达到阻力均衡,实现供液均匀;另一方面可通过设置的气液分调节站上的截止阀调节个通路的供液量,达到均匀供液,但是在蒸发器高差大、组数多、配管复杂的大型制冷装置中,要做到均匀供液是十分困难的,而且在过长的蒸发器供液管道上氨液会重新气化。
④ 液柱高度影响蒸发温度,特别是当蒸发温度很低的时候,影响尤为突出,因此低温系统不宜采用这种供液方式。对于高差较大的多组蒸发器共用一台氨液分离器的情况,下层蒸发器的蒸发温度会受到很大影响。
⑤低压制冷剂液体在蒸发器及有关管道内循环,依靠其相对于
蒸发器的液位差所具有的位能作为动力,其流速一般都较缓慢,而且制冷剂与管壁内表面之间的放热系数小,蒸发管道内表面的润湿面积占总蒸发面积的比例也小,因此,蒸发器的总换热强度较低。