选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 电气百科

交流伺服电机

伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)

交流伺服电机基本信息

交流伺服电机基本类型

长期以来,在要求调速性能较高的场合,一直占据主导地位的是应用直流电动机的调速系统。但直流电动机都存在一些固有的缺点,如电刷和换向器易磨损,需经常维护。换向器换向时会产生火花,使电动机的 最高速度受到限制,也使应用环境受到限制,而且直流电动机结构复杂,制造困难,所用钢铁材料消耗大,制造成本高。而交流电动机,特别是鼠笼式感应电动机没有上述缺点,且转子惯量较直流电机小,使得动态响应更好。在同样体积下,交流电动机输出功率可比直流电动机提高10﹪~70﹪,此外,交流电动机的容量可比直流电动机造得大,达到更高的电压和转速。现代数控机床都倾向采用交流伺服驱动,交流伺服驱动已有取代直流伺服驱动之势。

异步型

异步型交流伺服电动机指的是交流感应电动机。它有三相和单相之分,也有鼠笼式和线绕式,通常多用鼠笼式三相感应电动机。其结构简单,与同容量的直流电动机相比,质量轻1/2,价格仅为直流电动机的1/3。缺点是不能经济地实现范围很广的平滑调速,必须从电网吸收滞后的励磁电流。因而令电网功率因数变坏。

这种鼠笼转子的异步型交流伺服电动机简称为异步型交流伺服电动机,用IM表示。

同步型

同步型交流伺服电动机虽较感应电动机复杂,但比直流电动机简单。它的定子与感应电动机一样,都在定子上装有对称三相绕组。而转子却不同,按不同的转子结构又分电磁式及非电磁式两大类。非电磁式又分为磁滞式、永磁式和反应式多种。其中磁滞式和反应式同步电动机存在效率低、功率因数较差、制造容量不大等缺点。数控机床中多用永磁式同步电动机。与电磁式相比,永磁式优点是结构简单、运行可靠、效率较高;缺点是体积大、启动特性欠佳。但永磁式同步电动机采用高剩磁感应,高矫顽力的稀土类磁铁后,可比直流电动外形尺寸约小1/2,质量减轻60﹪,转子惯量减到直流电动机的1/5。它与异步电动机相比,由于采用了永磁铁励磁,消除了励磁损耗及有关的杂散损耗,所以效率高。又因为没有电磁式同步电动机所需的集电环和电刷等,其机械可靠性与感应(异步)电动机相同,而功率因数却大大高于异步电动机,从而使永磁同步电动机的体积比异步电动机小些。这是因为在低速时,感应(异步)电动机由于功率因数低,输出同样的有功功率时,它的视在功率却要大得多,而电动机主要尺寸是据视在功率而定的。

查看详情

交流伺服电机造价信息

  • 市场价
  • 信息价
  • 询价

伺服电机

  • 电机开键槽
  • 三菱
  • 13%
  • 安徽德曼研磨材料有限公司
  • 2022-12-08
查看价格

伺服电机

  • 1FL6062-1AC61-2AA1
  • 西门子
  • 13%
  • 湖南西控自动化设备有限公司
  • 2022-12-08
查看价格

伺服电机

  • 1FL6052-2AF21-2AA1
  • 西门子
  • 13%
  • 湖南西控自动化设备有限公司
  • 2022-12-08
查看价格

伺服电机

  • 1FL6042-1AF61-2AB1
  • 西门子
  • 13%
  • 湖南西控自动化设备有限公司
  • 2022-12-08
查看价格

伺服电机

  • 1FL6024-2AF21-1MB1
  • 西门子
  • 13%
  • 湖南西控自动化设备有限公司
  • 2022-12-08
查看价格

法国索菲SOMFY同轴电机

  • 珠海市2003年10月信息价
  • 建筑工程
查看价格

法国索菲SOMFY同轴电机

  • 珠海市2003年9月信息价
  • 建筑工程
查看价格

圈闸动机带摇控装置

  • 如带储池再些单价上加500元
  • 清远市连山县2019年上半年信息价
  • 建筑工程
查看价格

门的动机带摇控装置

  • 清远市连山县2011年下半年信息价
  • 建筑工程
查看价格

门的动机带摇控装置

  • 清远市连山县2010年上半年信息价
  • 建筑工程
查看价格

松下220V/380V交流伺服电机

  • 松下220V/380V交流伺服电机
  • 1台
  • 3
  • 按广东常用品牌
  • 中高档
  • 不含税费 | 含运费
  • 2019-04-08
查看价格

伺服电机

  • SQM10.16562
  • 1台
  • 3
  • 中高档
  • 含税费 | 含运费
  • 2017-10-16
查看价格

伺服电机及驱动器

  • 1.700W伺服电机及驱动器 2.支持伺服参数设置及电机增益调整 3.超静音伺服电机 4.配置专业控制
  • 1套
  • 1
  • 中档
  • 含税费 | 含运费
  • 2022-10-24
查看价格

伺服电机及驱动器

  • 1.700W伺服电机及驱动器 2.支持伺服参数设置及电机增益调整 3.超静音伺服电机 4.配置专业控制
  • 1套
  • 2
  • 中高档
  • 含税费 | 含运费
  • 2022-09-21
查看价格

伺服电机及驱动器

  • 1.700W伺服电机及驱动器2.支持伺服参数设置及电机增益调整3.超静音伺服电机4.配置专业控制
  • 1套
  • 1
  • 中档
  • 不含税费 | 含运费
  • 2022-08-10
查看价格

交流伺服电机基本常识

交流伺服电机的基本常识

交流伺服电动机的结构主要可分为两部分,即定子部分和转子部分。其中定子的结构与旋转变压器的定子基本相同,在定子铁心中也安放着空间互成90度电角度的两相绕组。其中一组为激磁绕组,另一组为控制绕组,交流伺服电动机是一种两相的交流电动机。 交流伺服电动机使用时,激磁绕组两端施加恒定的激磁电压Uf,控制绕组两端施加控制电压Uk。当定子绕组加上电压后,伺服电动机很快就会转动起来。 通入励磁绕组及控制绕组的电流在电机内产生一个旋转磁场,旋转磁场的转向决定了电机的转向,当任意一个绕组上所加的电压反相时,旋转磁场的方向就发生改变,电机的方向也发生改变。 为了在电机内形成一个圆形旋转磁场,要求激磁电压Uf和控制电压UK之间应有90度的相位差,常用的方法有:

1)利用三相电源的相电压和线电压构成90度的移相

2)利用三相电源的任意线电压

3)采用移相网络

4)在激磁相中串联电容器

查看详情

交流伺服电机基本应用

物料计量

粉状物料的计量,常用螺杆计量的方式.通过螺杆旋转的圈数的多少来达到计量的目的。为了提高计量的精度,要求螺杆的转速可调、位置定位准确,如果用交流伺服电机来驱动螺杆,利用交流伺服电机控制精度高、矩频特性好的优点可以达到快速精确计量同样.对粘稠体物料的计量,可以采用交流伺服电机来驱动齿轮泵,通过齿轮泵的一对齿轮的啮合来进行计量。

横封装置

在制袋式自动包装机械中,横封装置是一个重要的机构,它不仅要求定位准确,还要求横向封台时横封轮的线速度与薄膜供送的速度相等,而且在横封轮对滚后,横封轮的转速应增大,即以较快的速度相分离。

传统的方法是通过偏心轮或曲柄导杆机构等机械的方式来实现的,这样不仅机构复杂、可靠性低,且调整十分麻烦。如果用交流伺服电机来驱动横封轮,可以利用交流伺服电机优良的运动性能,通过交流伺服电机的非恒速运动来满足横向封口的要求,提高工作质量和效率。

供送物料

包装机械供送物料的工作方式有间歇式和连续式两类。

在间歇式供送物料方式中,如在间歇式制袋包装机上,以前,包装膜的供送多采用曲柄连杆机构间歇拉带的方式,不仅结构复杂,调整也困难。如果用交流伺服电机驱动拉带轮,可以在控制器中事先设定交流伺服电机每次运行的距离、运行的时间和停顿的时间,利用交流伺服电机的优良加速和定位性能,达到准确控制供送薄膜的长度的目的。尤其是在具有色标纠偏装置的控制系统中,通过色标检测开关检测到的偏差信号,经控制器输送到交流伺服电机,交流伺服电机优良的加速性能和控制精度,可以使偏差得到快速准确的纠正。

在连续式供送物料方式中,交流伺服电机的优良加速性能及其过载能力,可以保证连续匀速的供送物料。

查看详情

交流伺服电机常见问题

查看详情

交流伺服电机比较

步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。

精度不同

两相混合式步进电机步距角一般为3.6°、 1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角(如果采用步进电机细分驱动器,还可以将其细分至更小,比如1.8度/512细分=0.003515625度)。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。

低频不同

步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。

矩频不同

步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。

过载不同

步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以松下交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。

运行不同

步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。

响应不同

步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒。交流伺服系统的加速性能较好,以松下MSMA 400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合。

总结

综上所述,交流伺服系统在许多性能方面都优于步进电机。但在一些要求不高的场合也经常用步进电机来做执行电动机。所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。

查看详情

交流伺服电机具体参数

精度

步进电机的步距角一般为1.8。(两相)或0.72。(五相),而交流伺服电机的精度取决于电机编码器的精度。以伺服电机为例,其编码器为l6位,驱动器每接收2的16次方=65 536个脉冲,电机转一圈,其脉冲当量为360'/65 536=0,0055 ;并实现了位置的闭环控制.从根本上克服了步进电机的失步问题。

矩频特性

步进电机的输出力矩随转速的升高而下降,且在较高转速时会急剧下降,其工作转速一般在每分钟几十转到几百转。而交流伺服电机在其额定转速(一般为2000r/min或3000r/rain)以内为恒转矩输出,在额定转速以E为恒功率输出。

过载能力

以松下交流伺服电机为例。

加速性能

步进电机空载时从静止加速到每分钟几百转,需要200-400ms:交流伺服电机的加速性能较好.

查看详情

交流伺服电机构造

交流伺服电机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。

查看详情

交流伺服电机控制情况

在控制策略上,基于电机稳态数学模型的电压频率控制方法和开环磁通轨迹控制方法都难以达到良好的伺服特性,当前普遍应用的是基于永磁电机动态解耦数学模型的矢量控制方法,这是现代伺服系统的核心控制方法。虽然人们为了进一步提高控制特性和稳定性,提出了反馈线性化控制、滑模变结构控制、自适应控制等理论,还有不依赖数学模型的模糊控制和神经元网络控制方法,但是大多在矢量控制的基础上附加应用这些控制方法。还有,高性能伺服控制必须依赖高精度的转子位置反馈,人们一直希望取消这个环节,发展了无位置传感器技术(Sensorless Control)。至今,在商品化的产品中,采用无位置传感器技术只能达到大约1:100的调速比,可以用在一些低档的对位置和速度精度要求不高的伺服控制场合中,比如单纯追求快速起停和制动的缝纫机伺服控制,这个技术的高性能化还有很长的路要走。

查看详情

交流伺服电机文献

基于交流伺服电机的焊接摆动器设计 基于交流伺服电机的焊接摆动器设计

基于交流伺服电机的焊接摆动器设计

格式:pdf

大小:1.3MB

页数: 3页

针对摆动过程中要根据焊缝的质量及时调节焊接摆动器的焊接速度,同时为了满足摆动速度和摆动宽度的无级可调,本文利用了伺服电机的高响应和精确定位的特性设计了一种执行机构为交流伺服电机的焊接摆动器。焊接摆动器的控制系统采用触摸屏作焊接参数的输入装置;采用PLC控制焊接摆动器的摆动速度和摆动宽度。本文设计的焊接摆动器已成功应用于管道焊接中,焊缝质量符合要求。

交流伺服电机在金卤灯电极装配中的应用 交流伺服电机在金卤灯电极装配中的应用

交流伺服电机在金卤灯电极装配中的应用

格式:pdf

大小:1.3MB

页数: 2页

提出了利用交流伺服电机控制金卤灯电极进行精确装配的方法,详细阐述了计算机与伺服驱动器通过串口实现通信的过程,应用隐式链接调用动态链接库的方法实现了对电机的灵活控制。

交流伺服电机及其控制内容简介

《交流伺服电机及其控制》全面、系统、深入地阐述了交流伺服系统的工作原理、组成及设计方法。《交流伺服电机及其控制》第1章介绍了伺服系统的概念、发展过程以及交流伺服系统的构成、分类、性能指标、发展趋势;第2章介绍了感应电机伺服控制系统;第3章介绍了永磁同步电机伺服控制系统;第4章介绍了交流伺服控制系统功率变换电路;第5章介绍了伺服系统常用传感器的工作原理;第6章介绍了交流伺服系统常用的控制策略;第7章介绍了直接驱动交流伺服系统;第8章介绍了直线交流伺服系统。

查看详情

交流伺服电机及其控制目录

前言

第1章 伺服系统概述

1.1 伺服系统的基本概念

1.1.1 伺服系统的定义

1.1.2 伺服系统的组成

1.1.3 伺服系统性能的基本要求

1.1.4 伺服系统的种类

1.2 伺服系统的发展过程

l.3 交流伺服系统的构成

1.3.1 交流伺服电机

1.3.2 功率变换器

1.3.3 传感器

1.3.4 控制器

1.4 交流伺服系统的分类

1.4.1 按伺服系统控制信号的处理方法分类

1.4.2 按伺服系统的控制方式分类

1.5 交流伺服系统的常用性能指标

1.6 伺服系统的发展趋势

第2章 感应电机伺服控制系统

2.1 感应电机伺服控制系统的构成

2.2 感应电机的数学模型与坐标变换

2.2.1 矢量控制的基本思路

2.2.2 在三相静止坐标系下感应电机的数学模型

2.2.3 坐标变换

2.3 感应电机的矢量控制

2.3.1 转子磁场定向M-T坐标系中的基本方程

2.3.2 转差频率控制

2.3.3 解耦控制

2.3.4 磁通与电流控制

2.3.5 坐标变换的实现

2.3.6 弱磁控制

2.3.7 M-T坐标系下感应电机矢量控制伺服系统的构成

2.4 伺服控制感应电机的等效直流电机常数

2.4.1 伺服控制感应电机的等效电路

2.4.2 伺服控制感应电机的等效直流电机常数

2.4.3 伺服控制感应电机的特性框图与时间常数

2.5 关于感应电机的直接转矩控制

第3章 永磁同步电机伺服控制系统

3.1 咏磁同步电机伺服控制系统的构成

3.2 永磁同步电机的结构与工作原理

3.3 永磁同步电机的数学模型

3.3.1 永磁同步电机的基本方程

3.3.2 永磁同步电机的d、q轴数学模型

3.4 tqE弦波永磁同步电机的矢量控制方法

3.4.1 i=0控制

3.4.2 最大转矩控制

3.4 ,3弱磁控制

3.4.4 cos=1控制

3.4.5 最大效率控制

3.4.6 永磁同步电机的参数与输出范围

3.5 交流伺服电机的矢量控制系统

3.5.1 状态方程与控制框图

3.5.2 解耦控制与坐标变换的实现

3.5.3 电流控制器的分析与设计

3.5.4 速度控制器的设计

3.5.5 位置控制器的设计

3.5.6 d-q坐标系下永磁同步伺服电机矢量控制系统的构成

3.6 永磁同步伺服电机的设计要点

3.6.1 电机主要尺寸的确定

3.6.2 电动势的正弦化设计

3.6.3 定位转矩的抑制技术

第4章 交流伺服系统的功率变换电路

4.1 交流伺服系统功率变换主电路的构成

4.2 功率开关器件

4.2.1 功率晶体管(GTR)

4.2.2 金属氧化物半导体场效应晶体管(MOSFET)

4.2.3 绝缘栅双极型晶体管(IGBT)

4.3 功率变换主电路的设计

4.3.1 逆变电路的设计

4.3.2 缓冲电路的设计

4.3.3 整流电路的设计

4.3.4 滤波电路的设计

4.3.5 制动电路的设计

4.4 PWM控制技术

4.4.1 正弦波脉宽调制(s;PWM)控制技术

4.4.2 t电流跟踪型PWM控制技术

4.4.3 电压空间矢量PWM控制技术

第5章 交流伺服系统常用的传感器

5.1 位置传感器

5.1.1 旋转变压器

5.1.2 感应同步器

5.1.3 旋转变压器、数字转换器

5.1.4 光电编码器

5.1.5 磁性编码器

5.1.6 几种传感器的对比

5.2 速度传感器

5.2.1 测速发电机

5.2.2 数字转速传感器

5.3 电流传感器

5.3.1 霍尔电流传感器

5.3.2 电流检测IC

5.3.3 电阻+绝缘放大器

5.4 电压传感器

5.5 温度传感器

第6章 交流伺服系统常用的控制策略

6.1 基于滞回单元的有限时间整定控制

6.1.1 基于滞回单元的有限时间整定控制的原理

6.1.2 滞回(HYS)单元

6.2 非线性规范模型跟踪控制

6.2.1 非线性规范模型跟踪控制的原理

6.2.2 鲁棒补偿器的设计

6.3 2自由度控制

6.3.1 2自由度控制系统的定义

6.3.2 2自由度控制系统的结构形式

6.3.3 2自由度控制系统的设计

6.3.4 2自由度PID控制

6.4 H控制

6.4.1 交流伺服系统的灵敏度函数和补灵敏度函数

6.4.2 H混合灵敏度问题

6.4.3 加权函数的选择及H鲁棒控制器的设计

6.5 自适应控制

6.5.1 自校正控制系统(STCS)

6.5.2 模型参考自适应控制系统(MRACS)

6.6 滑模变结构控制

6.6.1 滑模变结构控制原理

6.6.2 滑模变结构控制的基本设计方法

6.7 智能控制

6.7.1 专家系统及专家控制

6.7.2 模糊控制

6.7.3 神经网络控制

6.7.4 学习控制

6.7.5 预测控制

6.8 交流伺服电机的高性能控制--机械谐振系统的振动控制

6.8.1 控制对象及问题的提出

6.8.2 谐振的各种控制方法

第7章 直接驱动交流伺服系统

7.1 概述

7.2 直接驱动伺服系统

7.2.1 直接驱动伺服系统的特点

7.2.2 直接驱动伺服电机应具备的特性

7.2.3 直接驱动伺服电机的结构及安装形式

7.2.4 直接驱动伺服电机的分类

7.3 直接驱动交流伺服电机的研究与发展

7.3.1 电磁型直接驱动交流伺服电机

7.3.2 动电型直接驱动交流伺服电机

7.4 关于直接驱动伺服电动机的控制策略

7.5 直接驱动伺服电机的发展方向分析

第8章 直线交流伺服系统

8.1 概述

8.2 直线电动机的工作原理

8.3 直线电动机的分类

8.3.1 按结构型式分类

8.3.2 按功能用途分类

8.3.3 按工作原理分类

8.4 直线感应电机技术

8.4.1 直线感应电动机的基本结构

8.4.2 直线感应电动机的基本工作原理

8.4.3 直线感应电机的基本特性

8.4.4 直线感应电机的矢量控制

8.5 直线永磁同步电机

8.5.1 直线永磁同步电机的基本结构

8.5.2 直线永磁同步电机的基本工作原理

8.5.3 直线永磁同步电机的分类

8.5.4 直线永磁同步电机的轴数学模型

8.6 高频响、短行程直线伺服电机

8.6.1 直流型高频响、短行程直线伺服电机

8.6.2 磁阻型高频响、短行程直线伺服电机

8.7 直线步进电动机

8.7.1 直线步进电动机的工作原理

8.7.2 直线步进电动机的结构分析

8.8 关于直线交流伺服电机的控制策略

8.8.1 传统的控制策略

8.8.2 现代控制策略

8.8.3 智能控制策略

8.9 高速机床直线电机进给伺服系统

8.9.1 直线电机直接驱动的优点

8.9.2 直线电机直接驱动存在的关键技术问题

8.9.3 直线交流伺服电机系统的主要指标及参数

8.9.4 直线电机伺服系统的发展趋势

附录

附录A 直流伺服电机的主要用语与定义

附录B 永磁同步伺服电机参数的等效直流电机换算

参考文献

查看详情

小型交流伺服电机控制电路设计内容简介

《小型交流伺服电机控制电路设计》主要介绍小型交流伺暇电机的基本特性、设计方法及应用实例。主要内容包括交流伺服电机的基本原理、构造与特征,电机驱动电路,电机控制,反馈控制电路的设计,使用单片机控制交流伺服电机,驱动交流伺服电机的三相PwM控制回路,基于软件的伺服控制器的设计,基于汇编语言实现的伺服控制器高速化,交流伺服电机的控制实验等。书后还给出了与直流电机有关的专业名词解释,对于读者理解书中的内容有很大的帮助。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639