选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

静力梁函数在结构振动分析中的应用(英文版)

《静力梁函数在结构振动分析中的应用(英文版)》是2013年6月1日科学出版社出版的图书,作者是周叮。 

静力梁函数在结构振动分析中的应用(英文版)基本信息

静力梁函数在结构振动分析中的应用(英文版)作者简介

周叮,南京工业大学特聘教授,南京工业大学、南京理工大学博士生导师。1957年5月20日生于南京,1978年2月至1985年2月就读于清华大学工程力学系,先后获工学学士和工学硕士学位,1985年3月进入南京理工大学工作,1995年5月任教授,1996年6月至2003年7月任香港大学土木工程系研究员,并获香港大学博士学位,20014年8月至20016年7月在英国曼切斯特大学机械、航空与土木学院从事博士后研究工作,20016年8月回国。

已发表论文200多篇,其中SCI录录80多篇,EL收录50多篇。担任20多个知名国际学术期刊的长期审稿人,国际期刊编委。现任江苏省力学学会常务理事,国际交流合作部主任。主持国家自然科学基金和江苏省高校自然科学研究计划重大项目,参加国家973计划项目的研究工作。研究方向包括:结构动力学,弹性力学,流-固耦合作用,复合材料力学,地基-土壤相互作用,人-结构相互作用,力学中的计算方法,结构振动控制,失重液体动力学等。研究成果获得过省、部科技进步奖。

查看详情

静力梁函数在结构振动分析中的应用(英文版)造价信息

  • 市场价
  • 信息价
  • 询价

振动分析

  • 6760AL
  • 13%
  • 深圳至安防盗器材有限公司
  • 2022-12-08
查看价格

振动分析

  • WL-971A功能介绍:振动分析器,输入脉冲可调,配合WL-70振动探测器使用;品种:振动检测仪表;类型:压电式;系列:有线探测器;规格:12VDC;
  • 卫力
  • 13%
  • 云南明诺科技有限公司(大理办事处)
  • 2022-12-08
查看价格

振动分析

  • 品种:振动分析仪;型号:BRJ-972
  • 百仁吉
  • 13%
  • 深圳市百仁吉科技有限公司海南分销处
  • 2022-12-08
查看价格

振动分析

  • 品种:振动分析仪;型号:BRJ-972
  • 百仁吉
  • 13%
  • 深圳市百仁吉科技有限公司四川直销处
  • 2022-12-08
查看价格

振动分析

  • 品种:振动分析仪;型号:BRJ-972
  • 百仁吉
  • 13%
  • 深圳市百仁吉科技有限公司甘肃直销
  • 2022-12-08
查看价格

振动桩锤

  • 激振力600KN
  • 台·月
  • 深圳市2020年7月信息价
  • 建筑工程
查看价格

振动桩锤

  • 激振力600KN
  • 台·月
  • 深圳市2019年12月信息价
  • 建筑工程
查看价格

振动桩锤

  • 激振力600KN
  • 台·月
  • 深圳市2019年11月信息价
  • 建筑工程
查看价格

振动桩锤

  • 激振力600KN
  • 台·月
  • 深圳市2019年6月信息价
  • 建筑工程
查看价格

振动桩锤

  • 激振力600KN
  • 台·月
  • 深圳市2019年2月信息价
  • 建筑工程
查看价格

振动探头(带分析仪)

  • 9.振动探头(带分析仪)
  • 24套
  • 1
  • 中高档
  • 不含税费 | 含运费
  • 2022-08-25
查看价格

π数字

  • 展项通过触摸屏方式循环播放π数列,参观者可以输入自己生日,π数列中找到自己生日.
  • 1项
  • 1
  • 中高档
  • 含税费 | 含运费
  • 2022-10-24
查看价格

π数字

  • 展项通过触摸屏方式循环播放π数列,参观者可以输入自己生日,π数列中找到自己生日.
  • 1项
  • 1
  • 中高档
  • 含税费 | 含运费
  • 2022-09-16
查看价格

π数字

  • 展项通过触摸屏方式循环播放π数列,参观者可以输入自己生日,π数列中找到自己生日.
  • 1项
  • 1
  • 高档
  • 不含税费 | 含运费
  • 2022-09-14
查看价格

π数字

  • 展项通过触摸屏方式循环播放π数列,参观者可以输入自己生日,π数列中找到自己生日.
  • 1项
  • 1
  • 中档
  • 不含税费 | 含运费
  • 2022-08-15
查看价格

静力梁函数在结构振动分析中的应用(英文版)目录

Preface

Chapter 1 Introduction

Chapter 2 Vibration Analysis of Tapered Euler-Bernoulli Beams

2.1 Introduction

2.2 The Rayleigh-Ritz Method for the Tapered Beams

2.3 A New Set of Admissible Functions

2.3.1 The coefficients for a truncated beam

2.3.2 The coefficients for a sharply ended beam

2.3.3 The tapered beam with rigid body motion

2.4 Convergency and Comparison Studies

2.4.1 Convergency study

2.4.2 Optimum expanding point of Taylor series

2.5 Numerical Results

2.6 Concluding Remarks

Chapter 3 Vibration Analysis of Tapered Euler-Bernoulli Beams with Intermediate Supports

3.1 Introduction

3.2 The Rayleigh-Ritz Method for Tapered Beams with Intermediate Supports

3.3 A Set of Static Tapered Beam Functions

3.3.1 The truncated beam

3.3.2 The sharply ended beam

3.3.3 The tapered beam with motions of rigid body

3.4 Numerical Examples

3.5 Concluding Remarks

Chapter 4 Vibration Analysis of Multi-span Timoshenke Beams

4.1 Introduction

4.2 Eigenfrequency Equation

4.3 Static Timoshenko Beam Functions

4.4 Convergence and Comparison Studies

4.5 Numerical Examples

4.6 Concluding Remarks

Chapter 5 Vibration Analysis of Tapered Timoshenke Beams

5.1 Introduction

5.2 Eigenfrequency Equation of Tapered Beam

5.3 The Static Timoshenko Beam Functions (STBF)

5.3.1 TRuncated beam

5.3.2 Sharply ended beam

5.4 Convergence and Comparison Study

5.5 Numerical Results

5.6 Conclusions

Chapter 6 Estimation of Dynamic Characteristics of a Spring-Mass-Beam System

6.1 Introduction

6.2 Governing Differential Equations

6.3 Galerkin Solutions

6.4 Basic Characteristics of Solutions

6.5 Static Beam Functions

6.6 Determination of Factors

6.7 An Example

6.8 Characteristics of Solutions

6.9 Conclusions

Chapter 7 Vibration Analysis of Kirchhoff Rectangular Plates

Part I Using Static Beam Functions under Point Loads

7.1 Introduction

7.2 Sets of Static Beam Functions under Point Loads

7.3 Rayleigh-Ritz Solution for Rectangular Plates

7.4 Numerical Results

7.5 Concluding Remarks

Part II Using Static Beam Functions under Sinusoidal Loads

7.1 Introduction

7.2 The Set of Static Beam Functions

7.3 The Rayleigh-Ritz Approach

7.4 Numerical Results

7.5 Concluding Remarks

……

Chapter 8 Vibration Analysis of Kirchhoff Rectangular Plates with Elastic Edge Constraints

Chapter 9 Vibration Analysis of Kirchhoff Rectangular Plates with Intermediate Line-supports

Chapter 10 Vibration Analysis of Kirchhoff Rectangular Plates with Elastic Intermediate Line-supports and Edge Constraints

Chapter 11 Vibration Analysis of Kirchhoff Rectangular Plates with Elastic Point-supports

Chapter 12 Vibration Analysis of Symmetrically Laminated Rectangular Plates with Intermediate Line-supports

Chapter 13 Vibration Analysis of Asymmetrically Laminated Rectangular Plates with Internal Line-supports

Chapter 14 Vibration Analysis of Composite Rectangular Plates with Point-supports

Chapter 15 Vibration Analysis of Tapered Kirchhoff Rectangular Plates

Chapter 16 Vibration Analysis of Tapered Kirchhoff Rectangular Plates with Intermediate Line-supports

Chapter 17 Vibration Analysis of Mindlin Rectangular Plates

Chapter 18 Vibration Analysis of Mindlin Rectangular Plates with Elastically Restrained Edges

Chapter 19 Vibration Analysis of Mindlin Rectangular Plates with Intermediate Line-supports

Chapter 20 Vibrations Analysis of Tapered Mindlin Plates

Chapter 21 Vibration Analysis of Thick Rectangular Plates with Internal Line-supports

Chapter 22 Vibration Analysis of Layered Thick Rectangular Plates with Internal Point-supports

Chapter 23 Vibration Analysis of Rectangular Tanks Partially Filled with Liquid

References 2100433B

查看详情

静力梁函数在结构振动分析中的应用(英文版)内容简介

《结构工程前沿丛书:静力梁函数在结构振动分析中的应用(英文版)》针对经典的欧拉梁理论和克西霍夫理论,以及铁木辛柯梁理论和米德林中厚板理论,分别建立个了各自的静力梁函数。取这些静力梁函数作为试函数,利用李兹法导出特征方程。研究结果表明,静力梁函数法不但能够给出高精度的固有频率,而且能够给出高精度的动力响应,特别是能够很好地模拟内部线支引起的剪力跳跃。《结构工程前沿丛书:静力梁函数在结构振动分析中的应用(英文版)》共21个章节,从变厚度欧拉梁的动力学特性计算直到储液罐的流-固耦合振动分析结束。内容构成一个完整的应用体系。《结构工程前沿丛书:静力梁函数在结构振动分析中的应用(英文版)》的研究方法,系作者首次独立提出,其中的绝大部分内容,均已被作者发表于国际著名的核心期刊。

查看详情

静力梁函数在结构振动分析中的应用(英文版)常见问题

查看详情

静力梁函数在结构振动分析中的应用(英文版)文献

英文版外贸合同(中英文对照版) 英文版外贸合同(中英文对照版)

英文版外贸合同(中英文对照版)

格式:doc

大小:60KB

页数: 8页

外贸合同 Contract( sales confirmation) 合同编号(Contract No.): _______________ 签订日期(Date) :___________ 签订地点(Signed at) :___________ 买方:__________________________ The Buyer:________________________ 地址:__________________________ Address: _________________________ 电话(Tel):___________传真(Fax):__________ 电子邮箱(E-mail):______________________ 卖方:________________

英文版会邀请函 英文版会邀请函

英文版会邀请函

格式:pdf

大小:60KB

页数: 3页

英文版年会邀请函 英文版年会邀请函【一】 Dear sir/madam: On [date], we will host an evening of celebration in honor of the retirement of [name], President of [company]. You are cordially invited to attend the celebration at [hotel], [location], on [date] from [time] to [time]. [name] has been the President of [company] since [year]. During this period, [company] expanded its business from [size] to [size].

静力梁函数在结构振动分析中的应用内容简介

《Applications of Static Beam Functions in Vibration Analysis of Structures(静力梁函数在结构振动分析中的应用)》以著名的结构力学分析方法——李兹法为基础,创造性地提出了以静力梁函数作为基函数,研究梁、板结构的动力学特性,重点分析变截面和变厚度、内部支撑以及边界条件对梁、板结构振动特性的影响。全书共23章,第1章介绍李兹法的发展史与存在的问题;第2章至第6章研究各种边界和内部支撑条件下变截面欧拉-伯努利梁和铁摩辛柯梁的振动特性;第7章至第11章研究各种边界和线支条件下等厚度基尔霍夫薄板的振动特性;第12章至第14章研究线支和点支等厚度复合材料薄板的振动特性;第15章和第16章研究变厚度基尔霍夫薄板的振动特性;第17章至第20章研究等厚度和变厚度米德林中厚板的振动特性;第21章和第22章研究线支和点支等厚度复合材料厚板的振动特性;第23章研究矩形储液罐的流-固耦合振动特性。

《Applications of Static Beam Functions in Vibration Analysis of Structures(静力梁函数在结构振动分析中的应用)》可供航空航天、机械、土木和力学等方面的科研工作者、工程设计人员、大专院校有关专业教师和研究生使用。

查看详情

静力梁函数在结构振动分析中的应用作者简介

周叮 南京工业大学特聘教授,南京工业大学、南京理工大学博士生导师。1957年5月20日生于南京。1978年2月至1985年2月就读于清华大学工程力学系,先后获工学学士和工学硕士学位,1985年3月进入南京理工大学工作,1995年5月任教授,1996年6月至2003年7月任香港大学土木工程系研究员,并获香港大学博士学位,2004年8月至2006年7月在英国曼切斯特大学机械、航空与土木学院从事博士后研究工作,2006年8月回国。

已发表论文200多篇。其中SCI收录80多篇,El收录50多篇。担任20多个知名国际学术期刊的长期审稿人。国际期刊编委。现任江苏省力学学会常务理事,国际交流合作部主任。主持国家自然科学基金和江苏省高校自然科学研究计划重大项目,参加国家973计划项目的研究工作。研究方向包括:结构动力学,弹性力学,流一固耦合作用,复合材料力学,地基一土壤相互作用,人一结构相互作用。力学中的计算方法。结构振动控制,失重液体动力学等。研究成果获得过省、部科技进步奖。 2100433B

查看详情

静力梁函数在结构振动分析中的应用图书目录

Preface

Chapter 1 Introduction

Chapter 2 Vibration Analysis of Tapered Euler-Bernoulli Beams

2.1 Introduction

2.2 The Rayleigh-Ritz Method for the Tapered Beams

2.3 A New Set of Admissible Functions

2.3.1 The coefficients for a truncated beam

2.3.2 The coefficients for a sharply ended beam

2.3.3 The tapered beam with rigid body motion

2.4 Convergency and Comparison Studies

2.4.1 Convergency study

2.4.2 Optimum expanding point of Taylor series

2.5 Numerical Results

2.6 Concluding Remarks

Chapter 3 Vibration Analysis of Tapered Euler-Bernoulli Beams with Intermediate Supports

3.1 Introduction

3.2 The Rayleigh-Ritz Method for Tapered Beams with Intermediate Supports

3.3 A Set of Static Tapered Beam Functions

3.3.1 The truncated beam

3.3.2 The sharply ended beam

3.3.3 The tapered beam with motions of rigid body

3.4 Numerical Examples

3.5 Concluding Remarks

Chapter 4 Vibration Analysis of Multi-span Timoshenke Beams

4.1 Introduction

4.2 Eigenfrequency Equation

4.3 Static Timoshenko Beam Functions

4.4 Convergence and Comparison Studies

4.5 Numerical Examples

4.6 Concluding Remarks

Chapter 5 Vibration Analysis of Tapered Timoshenke Beams

5.1 Introduction

5.2 Eigenfrequency Equation of Tapered Beam

5.3 The Static Timoshenko Beam Functions (STBF)

5.3.1 Truncated beam

5.3.2 Sharply ended beam

5.4 Convergence and Comparison Study

5.5 Numerical Results

5.6 Conclusions

Chapter 6 Estimation of Dynamic Characteristics of a Spring-Mass-Beam System

6.1 Introduction

6.2 Governing Differential Equations

6.3 Galerkin Solutions

6.4 Basic Characteristics of Solutions

6.5 Static Beam Functions

6.6 Determination of Factors

6.7 An Example

6.8 Characteristics of Solutions

6.9 Conclusions

Chapter 7 Vibration Analysis of Kirchhoff Rectangular Plates

Part Ⅰ Using Static Beam Functions under Point Loads

7.1 Introduction

7.2 Sets of Static Beam Functions under Point Loads

7.3 Rayleigh-Ritz Solution for Rectangular Plates

7.4 Numerical Results

7.5 Concluding Remarks

Part Ⅱ Using Static Beam Functions under Sinusoidal Loads

7.1 Introduction

7.2 The Set of Static Beam Functions

7.3 The RayleighoRitz Approach

7.4 Numerical Results

7.5 Concluding Remarks

Chapter 8 Vibration Analysis of Kirchhoff Rectangular Plates with Elastic Edge Constraints

8.1 Introduction

8.2 The Set of Static Beam Functions

8.3 The Rayleigh-Ritz Solution

8.4 Numerical Examples

8.5 Discussion and Conclusions

Chapter 9 Vibration Analysis of Kirchhoff Rectangular Plates with Intermediate Line-supports

Part Ⅰ Using a Combination of Vibrating Beam Functions and Polynomials

9.1 Introduction

9.2 Mathematical Model

9.3 Numerical Examples

9.4 Concluding Remarks

Part Ⅱ Using the Static Beam Functions for Beam with Point-supports

9.1 Introduction

9.2 A New Set of Admissible Functions

9.3 Eigenfrequency Equation

9.4 Some Numerical Results

9.5 Conclusions

Chapter 10 Vibration Analysis of Kirchhon Rectangular Plates with Elastic Intermediate Line-supports and Edge Constraints

10.1 Introduction

10.2 A Set of Static Beam Functions

10.3 Formulation of Eigenvalue Equation

10.4 Numerical Examples

10.5 Conclusions

Chapter 11 Vibration Analysis of Kirchhoff Rectangular Plates with Elastic Point-supports

11.1 Introduction

11.2 Sets of Static Beam Functions under Point Loads

11.3 Eigenvalue Problem with Rayleigh-Ritz Method

11.4 Numerical Results

11.5 Conclusion

Chapter 12 Vibration Analysis of Symmetrically Laminated Rectangular Plates with Intermediate Line-supports

12.1 Introduction

12.2 A Set of Static Beam Functions

12.3 Eigenfrequency Equation

12.4 Numerical Results

12.4.1 Accuracy and convergency study

12.4.2 Numerical examples

12.5 Concluding remarks

Chapter 13 Vibration Analysis of Asymmetrically Laminated Rectangular Plates with Internal Line-supports

13.1 Introduction

13.2 Energy Functional

13.3 Rayleigh-Ritz Solution

13.4 Trial Functions

13.5 Convergence and Comparison Study

13.6 Numerical Results

13.7 Conclusion

Chapter 14 Vibration Analysis of Composite Rectangular Plates with Point-supports

14.1 Introduction

14.2 Static Beam Functions

14.2.1 The static beam functions under sine series loads

14.2.2 The static beam functions under a point-load

14.3 Eigenfrequency Equation

14.4 Admissible Functions

14.5 Comparison and Convergence

14.5.1 Isotropic square plates with point-supports

14.5.2 Laminated square composite plates

14.6 Numerical Results

14.7 Conclusions

Chapter 15 Vibration Analysis of Tapered Kirchhoff Rectangular Plates

15.1 Introduction

15.2 The development of a set of tapered beam functions

15.3 The Rayleigh-Ritz method

15.4 Numerical examples

15.5 Concluding remarks

Appendix

Chapter 16 Vibration Analysis of Tapered Kirchhoff Rectangular Plates with Intermediate Line-supports

16.1 Introduction

16.2 The Rayleigh-Ritz Method for Tapered Rectangular Plates

16.3 A Set of Static Beam Functions

16.3.1 The truncated beam

16.3.2 The sharp ended beam

16.3.3 The tapered beam with rigid body motions

16.4 Numerical Examples

16.5 Conclusions

Chapter 17 Vibration Analysis of Mindlin Rectangular Plates

17.1 Introduction

17.2 A Set of Static Timoshenko Beam Functions

17.3 Eigenfrequency Equation of Mindlin Plate

17.4 Comparison and Convergency Studies

17.5 The Parametric Study

17.6 Conclusions

Chapter 18 Vibration Analysis of Mindlin Rectangular Plates with Elastically Restrained Edges

18.1 Introduction

18.2 Rayleigh-Ritz Formulae for Mindlin Rectangular Plates

18.3 A Set of Static Timoshenko Beam Functions

18.4 Comparison and Convergency Studies

18.5 Numerical Results

18.6 ConclusionsChapter 19 Vibration Analysis of Mindlin Rectangular Plates

with Intermediate Line-supports

19.1 Introduction

19.2 Rayleigh-Ritz Solution of Mindlin Plate

19.3 Static Timoshenko Beam Functions

19.4 Convergence and Comparison Study

19.5 Numerical Results

19.6 Conclusions

Chapter 20 Vibrations Analysis of Tapered Mindlin Plates

20.1 Introduction

20.2 The Eigenfrequency Equation of Tapered Plates

20.3 Two Sets of Static Timoshenko Beam Functions (STBF)

20.3.1 Truncated beam

20.3.2 Sharp-ended beam

20.4 Convergence and Comparison Studies

20.5 Numerical Results

20.6 Concluding Remarks

Chapter 21 Vibration Analysis of Thick Rectangular Plates with Internal Line-supports

21.1 Introduction

21.2 Trial Functions

21.3 Numerical Examples

21.3.1 Preliminary assessment: simply supported laminated plates

21.3.2 Continuous rectangular plates

21.4 Conclusions

Chapter 22 Vibration Analysis of Layered Thick Rectangular Plates with Internal Point-supports

22.1 Introduction

22.2 Two Sets of Static Beam Functions

22.2.1 Static beam functions under a series of sinusoidal loads

22.2.2 Static beam functions under a series of point-loads

22.3 Finite Layer Formulation

22.4 Basic Functions

22.5 Numerical Studies

22.5.1 Convergence and comparison

22.5.2 Numerical examples

22.6 Concluding Remarks

Appendix A

Appendix B

Chapter 23 Vibration Analysis of Rectangular Tanks Partially Filled with Liquid

23.1 Introduction

23.2 Basic Equations

23.3 Solution of Velocity Potential

23.4 Rayleigh-Ritz-Galerkin Method

23.4.1 Rayleigh quotient

23.4.2 Eigenfrequency equation

23.5 Admissible Functions

23.6 Numerical Results

23.6.1 Convergence and comparison study

23.6.2 Parametric effect study

23.7 Conclusions

References

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639