选择特殊符号
选择搜索类型
请输入搜索
周叮,南京工业大学特聘教授,南京工业大学、南京理工大学博士生导师。1957年5月20日生于南京,1978年2月至1985年2月就读于清华大学工程力学系,先后获工学学士和工学硕士学位,1985年3月进入南京理工大学工作,1995年5月任教授,1996年6月至2003年7月任香港大学土木工程系研究员,并获香港大学博士学位,20014年8月至20016年7月在英国曼切斯特大学机械、航空与土木学院从事博士后研究工作,20016年8月回国。
已发表论文200多篇,其中SCI录录80多篇,EL收录50多篇。担任20多个知名国际学术期刊的长期审稿人,国际期刊编委。现任江苏省力学学会常务理事,国际交流合作部主任。主持国家自然科学基金和江苏省高校自然科学研究计划重大项目,参加国家973计划项目的研究工作。研究方向包括:结构动力学,弹性力学,流-固耦合作用,复合材料力学,地基-土壤相互作用,人-结构相互作用,力学中的计算方法,结构振动控制,失重液体动力学等。研究成果获得过省、部科技进步奖。
Preface
Chapter 1 Introduction
Chapter 2 Vibration Analysis of Tapered Euler-Bernoulli Beams
2.1 Introduction
2.2 The Rayleigh-Ritz Method for the Tapered Beams
2.3 A New Set of Admissible Functions
2.3.1 The coefficients for a truncated beam
2.3.2 The coefficients for a sharply ended beam
2.3.3 The tapered beam with rigid body motion
2.4 Convergency and Comparison Studies
2.4.1 Convergency study
2.4.2 Optimum expanding point of Taylor series
2.5 Numerical Results
2.6 Concluding Remarks
Chapter 3 Vibration Analysis of Tapered Euler-Bernoulli Beams with Intermediate Supports
3.1 Introduction
3.2 The Rayleigh-Ritz Method for Tapered Beams with Intermediate Supports
3.3 A Set of Static Tapered Beam Functions
3.3.1 The truncated beam
3.3.2 The sharply ended beam
3.3.3 The tapered beam with motions of rigid body
3.4 Numerical Examples
3.5 Concluding Remarks
Chapter 4 Vibration Analysis of Multi-span Timoshenke Beams
4.1 Introduction
4.2 Eigenfrequency Equation
4.3 Static Timoshenko Beam Functions
4.4 Convergence and Comparison Studies
4.5 Numerical Examples
4.6 Concluding Remarks
Chapter 5 Vibration Analysis of Tapered Timoshenke Beams
5.1 Introduction
5.2 Eigenfrequency Equation of Tapered Beam
5.3 The Static Timoshenko Beam Functions (STBF)
5.3.1 TRuncated beam
5.3.2 Sharply ended beam
5.4 Convergence and Comparison Study
5.5 Numerical Results
5.6 Conclusions
Chapter 6 Estimation of Dynamic Characteristics of a Spring-Mass-Beam System
6.1 Introduction
6.2 Governing Differential Equations
6.3 Galerkin Solutions
6.4 Basic Characteristics of Solutions
6.5 Static Beam Functions
6.6 Determination of Factors
6.7 An Example
6.8 Characteristics of Solutions
6.9 Conclusions
Chapter 7 Vibration Analysis of Kirchhoff Rectangular Plates
Part I Using Static Beam Functions under Point Loads
7.1 Introduction
7.2 Sets of Static Beam Functions under Point Loads
7.3 Rayleigh-Ritz Solution for Rectangular Plates
7.4 Numerical Results
7.5 Concluding Remarks
Part II Using Static Beam Functions under Sinusoidal Loads
7.1 Introduction
7.2 The Set of Static Beam Functions
7.3 The Rayleigh-Ritz Approach
7.4 Numerical Results
7.5 Concluding Remarks
……
Chapter 8 Vibration Analysis of Kirchhoff Rectangular Plates with Elastic Edge Constraints
Chapter 9 Vibration Analysis of Kirchhoff Rectangular Plates with Intermediate Line-supports
Chapter 10 Vibration Analysis of Kirchhoff Rectangular Plates with Elastic Intermediate Line-supports and Edge Constraints
Chapter 11 Vibration Analysis of Kirchhoff Rectangular Plates with Elastic Point-supports
Chapter 12 Vibration Analysis of Symmetrically Laminated Rectangular Plates with Intermediate Line-supports
Chapter 13 Vibration Analysis of Asymmetrically Laminated Rectangular Plates with Internal Line-supports
Chapter 14 Vibration Analysis of Composite Rectangular Plates with Point-supports
Chapter 15 Vibration Analysis of Tapered Kirchhoff Rectangular Plates
Chapter 16 Vibration Analysis of Tapered Kirchhoff Rectangular Plates with Intermediate Line-supports
Chapter 17 Vibration Analysis of Mindlin Rectangular Plates
Chapter 18 Vibration Analysis of Mindlin Rectangular Plates with Elastically Restrained Edges
Chapter 19 Vibration Analysis of Mindlin Rectangular Plates with Intermediate Line-supports
Chapter 20 Vibrations Analysis of Tapered Mindlin Plates
Chapter 21 Vibration Analysis of Thick Rectangular Plates with Internal Line-supports
Chapter 22 Vibration Analysis of Layered Thick Rectangular Plates with Internal Point-supports
Chapter 23 Vibration Analysis of Rectangular Tanks Partially Filled with Liquid
References 2100433B
《结构工程前沿丛书:静力梁函数在结构振动分析中的应用(英文版)》针对经典的欧拉梁理论和克西霍夫理论,以及铁木辛柯梁理论和米德林中厚板理论,分别建立个了各自的静力梁函数。取这些静力梁函数作为试函数,利用李兹法导出特征方程。研究结果表明,静力梁函数法不但能够给出高精度的固有频率,而且能够给出高精度的动力响应,特别是能够很好地模拟内部线支引起的剪力跳跃。《结构工程前沿丛书:静力梁函数在结构振动分析中的应用(英文版)》共21个章节,从变厚度欧拉梁的动力学特性计算直到储液罐的流-固耦合振动分析结束。内容构成一个完整的应用体系。《结构工程前沿丛书:静力梁函数在结构振动分析中的应用(英文版)》的研究方法,系作者首次独立提出,其中的绝大部分内容,均已被作者发表于国际著名的核心期刊。
室内设计软件:AutoCAD2004(常用)、3Dmax效果图建模、lightscape3.2渲染软件,photshop7。0图片处理软件。 学室内设计,首要先看懂设计图纸,AutoCAD软件一般画施...
Ding Hall ding 词性及解释 vi. 响, 连响, 反复告诫 vt. 反复告诉 n. 钟声 (网络用语)顶 hall [hɔ:l] n. 礼堂, 大厅; 娱乐场 [常Hall ](政治团体...
comprehensive building
英文版外贸合同(中英文对照版)
外贸合同 Contract( sales confirmation) 合同编号(Contract No.): _______________ 签订日期(Date) :___________ 签订地点(Signed at) :___________ 买方:__________________________ The Buyer:________________________ 地址:__________________________ Address: _________________________ 电话(Tel):___________传真(Fax):__________ 电子邮箱(E-mail):______________________ 卖方:________________
英文版会邀请函
英文版年会邀请函 英文版年会邀请函【一】 Dear sir/madam: On [date], we will host an evening of celebration in honor of the retirement of [name], President of [company]. You are cordially invited to attend the celebration at [hotel], [location], on [date] from [time] to [time]. [name] has been the President of [company] since [year]. During this period, [company] expanded its business from [size] to [size].
《Applications of Static Beam Functions in Vibration Analysis of Structures(静力梁函数在结构振动分析中的应用)》以著名的结构力学分析方法——李兹法为基础,创造性地提出了以静力梁函数作为基函数,研究梁、板结构的动力学特性,重点分析变截面和变厚度、内部支撑以及边界条件对梁、板结构振动特性的影响。全书共23章,第1章介绍李兹法的发展史与存在的问题;第2章至第6章研究各种边界和内部支撑条件下变截面欧拉-伯努利梁和铁摩辛柯梁的振动特性;第7章至第11章研究各种边界和线支条件下等厚度基尔霍夫薄板的振动特性;第12章至第14章研究线支和点支等厚度复合材料薄板的振动特性;第15章和第16章研究变厚度基尔霍夫薄板的振动特性;第17章至第20章研究等厚度和变厚度米德林中厚板的振动特性;第21章和第22章研究线支和点支等厚度复合材料厚板的振动特性;第23章研究矩形储液罐的流-固耦合振动特性。
《Applications of Static Beam Functions in Vibration Analysis of Structures(静力梁函数在结构振动分析中的应用)》可供航空航天、机械、土木和力学等方面的科研工作者、工程设计人员、大专院校有关专业教师和研究生使用。
周叮 南京工业大学特聘教授,南京工业大学、南京理工大学博士生导师。1957年5月20日生于南京。1978年2月至1985年2月就读于清华大学工程力学系,先后获工学学士和工学硕士学位,1985年3月进入南京理工大学工作,1995年5月任教授,1996年6月至2003年7月任香港大学土木工程系研究员,并获香港大学博士学位,2004年8月至2006年7月在英国曼切斯特大学机械、航空与土木学院从事博士后研究工作,2006年8月回国。
已发表论文200多篇。其中SCI收录80多篇,El收录50多篇。担任20多个知名国际学术期刊的长期审稿人。国际期刊编委。现任江苏省力学学会常务理事,国际交流合作部主任。主持国家自然科学基金和江苏省高校自然科学研究计划重大项目,参加国家973计划项目的研究工作。研究方向包括:结构动力学,弹性力学,流一固耦合作用,复合材料力学,地基一土壤相互作用,人一结构相互作用。力学中的计算方法。结构振动控制,失重液体动力学等。研究成果获得过省、部科技进步奖。 2100433B
Preface
Chapter 1 Introduction
Chapter 2 Vibration Analysis of Tapered Euler-Bernoulli Beams
2.1 Introduction
2.2 The Rayleigh-Ritz Method for the Tapered Beams
2.3 A New Set of Admissible Functions
2.3.1 The coefficients for a truncated beam
2.3.2 The coefficients for a sharply ended beam
2.3.3 The tapered beam with rigid body motion
2.4 Convergency and Comparison Studies
2.4.1 Convergency study
2.4.2 Optimum expanding point of Taylor series
2.5 Numerical Results
2.6 Concluding Remarks
Chapter 3 Vibration Analysis of Tapered Euler-Bernoulli Beams with Intermediate Supports
3.1 Introduction
3.2 The Rayleigh-Ritz Method for Tapered Beams with Intermediate Supports
3.3 A Set of Static Tapered Beam Functions
3.3.1 The truncated beam
3.3.2 The sharply ended beam
3.3.3 The tapered beam with motions of rigid body
3.4 Numerical Examples
3.5 Concluding Remarks
Chapter 4 Vibration Analysis of Multi-span Timoshenke Beams
4.1 Introduction
4.2 Eigenfrequency Equation
4.3 Static Timoshenko Beam Functions
4.4 Convergence and Comparison Studies
4.5 Numerical Examples
4.6 Concluding Remarks
Chapter 5 Vibration Analysis of Tapered Timoshenke Beams
5.1 Introduction
5.2 Eigenfrequency Equation of Tapered Beam
5.3 The Static Timoshenko Beam Functions (STBF)
5.3.1 Truncated beam
5.3.2 Sharply ended beam
5.4 Convergence and Comparison Study
5.5 Numerical Results
5.6 Conclusions
Chapter 6 Estimation of Dynamic Characteristics of a Spring-Mass-Beam System
6.1 Introduction
6.2 Governing Differential Equations
6.3 Galerkin Solutions
6.4 Basic Characteristics of Solutions
6.5 Static Beam Functions
6.6 Determination of Factors
6.7 An Example
6.8 Characteristics of Solutions
6.9 Conclusions
Chapter 7 Vibration Analysis of Kirchhoff Rectangular Plates
Part Ⅰ Using Static Beam Functions under Point Loads
7.1 Introduction
7.2 Sets of Static Beam Functions under Point Loads
7.3 Rayleigh-Ritz Solution for Rectangular Plates
7.4 Numerical Results
7.5 Concluding Remarks
Part Ⅱ Using Static Beam Functions under Sinusoidal Loads
7.1 Introduction
7.2 The Set of Static Beam Functions
7.3 The RayleighoRitz Approach
7.4 Numerical Results
7.5 Concluding Remarks
Chapter 8 Vibration Analysis of Kirchhoff Rectangular Plates with Elastic Edge Constraints
8.1 Introduction
8.2 The Set of Static Beam Functions
8.3 The Rayleigh-Ritz Solution
8.4 Numerical Examples
8.5 Discussion and Conclusions
Chapter 9 Vibration Analysis of Kirchhoff Rectangular Plates with Intermediate Line-supports
Part Ⅰ Using a Combination of Vibrating Beam Functions and Polynomials
9.1 Introduction
9.2 Mathematical Model
9.3 Numerical Examples
9.4 Concluding Remarks
Part Ⅱ Using the Static Beam Functions for Beam with Point-supports
9.1 Introduction
9.2 A New Set of Admissible Functions
9.3 Eigenfrequency Equation
9.4 Some Numerical Results
9.5 Conclusions
Chapter 10 Vibration Analysis of Kirchhon Rectangular Plates with Elastic Intermediate Line-supports and Edge Constraints
10.1 Introduction
10.2 A Set of Static Beam Functions
10.3 Formulation of Eigenvalue Equation
10.4 Numerical Examples
10.5 Conclusions
Chapter 11 Vibration Analysis of Kirchhoff Rectangular Plates with Elastic Point-supports
11.1 Introduction
11.2 Sets of Static Beam Functions under Point Loads
11.3 Eigenvalue Problem with Rayleigh-Ritz Method
11.4 Numerical Results
11.5 Conclusion
Chapter 12 Vibration Analysis of Symmetrically Laminated Rectangular Plates with Intermediate Line-supports
12.1 Introduction
12.2 A Set of Static Beam Functions
12.3 Eigenfrequency Equation
12.4 Numerical Results
12.4.1 Accuracy and convergency study
12.4.2 Numerical examples
12.5 Concluding remarks
Chapter 13 Vibration Analysis of Asymmetrically Laminated Rectangular Plates with Internal Line-supports
13.1 Introduction
13.2 Energy Functional
13.3 Rayleigh-Ritz Solution
13.4 Trial Functions
13.5 Convergence and Comparison Study
13.6 Numerical Results
13.7 Conclusion
Chapter 14 Vibration Analysis of Composite Rectangular Plates with Point-supports
14.1 Introduction
14.2 Static Beam Functions
14.2.1 The static beam functions under sine series loads
14.2.2 The static beam functions under a point-load
14.3 Eigenfrequency Equation
14.4 Admissible Functions
14.5 Comparison and Convergence
14.5.1 Isotropic square plates with point-supports
14.5.2 Laminated square composite plates
14.6 Numerical Results
14.7 Conclusions
Chapter 15 Vibration Analysis of Tapered Kirchhoff Rectangular Plates
15.1 Introduction
15.2 The development of a set of tapered beam functions
15.3 The Rayleigh-Ritz method
15.4 Numerical examples
15.5 Concluding remarks
Appendix
Chapter 16 Vibration Analysis of Tapered Kirchhoff Rectangular Plates with Intermediate Line-supports
16.1 Introduction
16.2 The Rayleigh-Ritz Method for Tapered Rectangular Plates
16.3 A Set of Static Beam Functions
16.3.1 The truncated beam
16.3.2 The sharp ended beam
16.3.3 The tapered beam with rigid body motions
16.4 Numerical Examples
16.5 Conclusions
Chapter 17 Vibration Analysis of Mindlin Rectangular Plates
17.1 Introduction
17.2 A Set of Static Timoshenko Beam Functions
17.3 Eigenfrequency Equation of Mindlin Plate
17.4 Comparison and Convergency Studies
17.5 The Parametric Study
17.6 Conclusions
Chapter 18 Vibration Analysis of Mindlin Rectangular Plates with Elastically Restrained Edges
18.1 Introduction
18.2 Rayleigh-Ritz Formulae for Mindlin Rectangular Plates
18.3 A Set of Static Timoshenko Beam Functions
18.4 Comparison and Convergency Studies
18.5 Numerical Results
18.6 ConclusionsChapter 19 Vibration Analysis of Mindlin Rectangular Plates
with Intermediate Line-supports
19.1 Introduction
19.2 Rayleigh-Ritz Solution of Mindlin Plate
19.3 Static Timoshenko Beam Functions
19.4 Convergence and Comparison Study
19.5 Numerical Results
19.6 Conclusions
Chapter 20 Vibrations Analysis of Tapered Mindlin Plates
20.1 Introduction
20.2 The Eigenfrequency Equation of Tapered Plates
20.3 Two Sets of Static Timoshenko Beam Functions (STBF)
20.3.1 Truncated beam
20.3.2 Sharp-ended beam
20.4 Convergence and Comparison Studies
20.5 Numerical Results
20.6 Concluding Remarks
Chapter 21 Vibration Analysis of Thick Rectangular Plates with Internal Line-supports
21.1 Introduction
21.2 Trial Functions
21.3 Numerical Examples
21.3.1 Preliminary assessment: simply supported laminated plates
21.3.2 Continuous rectangular plates
21.4 Conclusions
Chapter 22 Vibration Analysis of Layered Thick Rectangular Plates with Internal Point-supports
22.1 Introduction
22.2 Two Sets of Static Beam Functions
22.2.1 Static beam functions under a series of sinusoidal loads
22.2.2 Static beam functions under a series of point-loads
22.3 Finite Layer Formulation
22.4 Basic Functions
22.5 Numerical Studies
22.5.1 Convergence and comparison
22.5.2 Numerical examples
22.6 Concluding Remarks
Appendix A
Appendix B
Chapter 23 Vibration Analysis of Rectangular Tanks Partially Filled with Liquid
23.1 Introduction
23.2 Basic Equations
23.3 Solution of Velocity Potential
23.4 Rayleigh-Ritz-Galerkin Method
23.4.1 Rayleigh quotient
23.4.2 Eigenfrequency equation
23.5 Admissible Functions
23.6 Numerical Results
23.6.1 Convergence and comparison study
23.6.2 Parametric effect study
23.7 Conclusions
References