选择特殊符号
选择搜索类型
请输入搜索
针对航空发动机、小型无人驾驶机对极小曲率半径管的需求申请人提出管材充液剪切弯曲成形的新方法,它比采用传统弯曲工艺加工所得的曲率半径可小一倍,制品占有空间可小四倍。新方法的特点是改变传统弯曲工艺的外侧受拉,内侧受压变形机制为剪切变形机制,解决了传统弯曲工艺外侧严重变薄甚至开裂而不能实现小曲率半径弯曲的难题。通过向管内充入一定内压的液体作为支撑,实时控制液体压力、轴向力和剪切力来调整成形区的应力状态,从而克服了采用芯棒支撑剪切弯曲成形时的内侧起皱和横截面畸变。以塑性力学为基础,采用数值模拟和实验研究相结合的方法,系统研究充液剪切弯曲过程中液体压力、轴向力和剪切力共同作用下的应力应变及塑性变形行为。阐明管材充液剪切弯曲的缺陷形成机制及临界条件,揭示管材不同部位在充液剪切弯曲时的塑性变形发生发展过程与应力、应变状态变化、壁厚分布及微观组织变化等规律,为管材充液剪切弯曲成形奠定理论基础。
针对航空发动机、小型无人驾驶机对极小曲率半径管的需求,提出了管材充液剪切弯曲成形新方法。新方法的特点是改变传统弯曲工艺的外侧受拉,内侧受压变形机制为剪切变形机制,解决了传统弯曲工艺外侧严重变薄甚至开裂而不能实现小曲率半径弯曲的难题。通过向管内充入一定内压的液体作为支撑,实时控制液体压力、轴向力和剪切力来调整变形区的应力状态,从而克服了采用芯棒支撑剪切弯曲成形时的内侧起皱和横截面畸变。以塑性力学为基础,给出了充液剪切弯曲过程中剪应力、剪应变的解析式;采用数值模拟和实验研究相结合的方法,系统研究了充液剪切弯曲过程中液体压力、轴向力和剪切力共同作用下的应力应变及塑形变形行为。阐述了管材充液剪切弯曲的缺陷形成机制及临界条件,揭示了管材不同部位在充液剪切弯曲时的塑性变形发生发展过程与应力、应变状态变化、壁厚分布及微观组织变化等规律。为了更加清楚的揭示充液剪切弯曲成形规律,验证剪应力只在侧面分布的假设,进一步抽象和简化所研究的剪切弯曲模型,结合矩形管的应用背景,提出矩形管充液剪切弯曲成形新方法。开展了铝合金矩形截面管充液剪切弯曲成形数值模拟和实验研究,研究了矩形管充液剪切弯曲的缺陷形成机制及临界条件,分析了内压和补料比对缺陷产生的影响;揭示了矩形管不同部位在充液剪切弯曲时的塑性变形发生发展过程与应力、应变状态变化、壁厚分布及微观组织变化等规律。重新设计和制造了矩形截面管的模具,开展了矩形截面管充液剪切弯曲实验,获得了不同条件下的试件,采用网格应变测试技术,获得了弯曲过程中塑形变形行为,为充液剪切弯曲过程中剪应力、剪应变的解析提供实验验证数据。通过对圆管和矩形管充液剪切弯曲成形规律的研究,为管材充液剪切弯曲成形奠定理论基础。 2100433B
厂家提供的样本上会做说明的
我们在管道铺设时,由于沟槽、地形的因素,有时会出现小型障碍物,必须借助管材的弯曲和接头的角度进行转弯PE管的横向弯曲要根据PE管的具体韧性,还有管管外径(mm) 允许弯曲半径(m) 6m管材允许转移幅...
曲率半径就是 弯头一端中心点到另一端中心点的距离。给你图纸一看就明白了。 河北弯头管件制造有限公司 刘建功为您提供。
小曲率半径紫铜管弯头挤弯工艺及模具
通过对挤弯工艺的变形过程,变形区应力应变状态、工艺的影响及模具结构分析、证明该工艺是一种优质,高效生产较小曲率半径弯头的新技术。
小曲率半径隧道盾构推进的轴线控制
小曲率半径隧道盾构推进的轴线控制——盾构沿小半径曲线掘进,难度最大的问题是隧道轴线控制。该文通过小半径曲线隧道盾构掘进土压的分析,采取小半径曲线隧道盾构掘进措施,提高了小曲率半径盾构隧道施工质量。其重要途径是采用铰接盾构;勤测勤纠;合理控制盾...
第1章概论
1.1引言
1.2板材充液成形技术介绍
1.2.1板材充液成形技术发展历史概况
1.2.2板材充液成形技术分类及成形原理
1.2.3板材充液成形技术特点
1.2.4板材热介质成形技术优势及影响因素
1.2.5世界上部分著名的充液成形研究机构
1.3板材充液成形技术国内外发展及研究现状
1.3.1橡皮囊液压成形阶段
1.3.2充液成形技术阶段
1.3.3充液成形技术的应用
1.4板材热介质充液成形技术国内外研究现状
1.4.1板材热介质充液成形技术国内外发展概况
1.4.2板材热介质成形技术设备国内外研究现状
1.4.3板材热介质成形材料性能测试研究现状
1.5发展趋势
参考文献
第2章本构方程、屈服准则及断裂准则
2.1本构方程
2.1.1本构方程定义与分类
2.1.2经验本构模型及建模方法
2.1.3基于内变量的物理本构模型
2.2屈服准则
2.2.1屈服准则定义
2.2.2稳定塑性材料屈服面外凸性和塑性应变增量法向规则
2.2.3Barlat系列各向异性屈服准则简介
2.2.4Barlat2000屈服准则各向异性系数的计算
2.3断裂准则
2.3.1基于应力三轴度的断裂准则
2.3.2基于应变能或损伤阈值判断的断裂准则
参考文献
第3章基于单动液压机通用模架的充液拉深装备及实例
3.1总体方案
3.2充液拉深通用模架的研制
3.2.1方案的确定
3.2.2超高压液室的结构设计及其强度的有限元分析
3.2.3节能高效压边缸的设计
3.3液压控制系统的设计
3.3.1方案的选择
3.3.2充液拉深液压控制系统工作原理
3.3.3超高压减压装置的特点
3.3.4减压装置超高压密封形式的选择
3.4计算机控制系统的设计
3.4.1原理分析及方案的选择
3.4.2计算机控制软件的设计
3.4.3计算机控制系统的响应性能分析
3.5板材充液成形设备实例
3.5.1HFS-300型充液拉深设备
3.5.2模架型式的充液成形装备改造
3.5.3基于通用双动液压机的充液成形装备改造
第4章板材充液拉深溢流压力模型及反向建模技术
4.1充液拉深溢流临界压力
4.1.1筒形件充液拉深液室溢流压力模型
4.1.2筒形件充液拉深溢流后流体压力模型
4.1.3方盒形件充液拉深液室溢流压力模型
4.1.4方盒形件充液拉深溢流后流体压力模型
4.2液体流动计算模型的离散格式
4.2.1筒形件充液拉深液体流动模型离散格式
4.2.2方盒形件充液拉深液体流动模型离散格式
4.3充液室液体压力的功能研究
4.3.1摩擦保持及溢流润滑效果
4.3.2液室压力对零件成形性的影响
4.3.3液室最高压力与板材成形极限的关系
4.4软拉延筋的功能分析
4.4.1筒形件充液拉深软拉延筋
4.4.2方锥盒形件充液成形直边与拐角处软拉深筋的功能分析
4.5基于反向建模的精确材料模型优化策略
4.5.1材料和模具工装
4.5.2优化方法
4.5.3确定目标函数和变量
4.5.4使用优化材料参数分析过程成形参数的作用
第5章基于先进板材充液成形技术的衍生工艺措施
5.1方盒零件圆形凹模局部约束成形
5.1.1工具及材料
5.1.2模拟中的网格模型
5.1.3成形的盒形零件以及失效形式
5.1.4壁厚分布
5.1.5成形极限分析
5.1.6考虑轧制方向的坯料不同定位
5.2多层板充液成形:基于中间铝箔成形的实验分析及数值模拟
5.2.1主要参数和数值模拟模型
5.2.2筒形件成形
5.2.3厚度分布
5.2.4讨论分析
5.2.5起皱和破裂的防止
5.2.6成形极限的提高
5.2.7凹模型腔压力变化的影响
5.3径向加压辅助充液拉深
5.3.1材料及有限元模型
5.3.2压力边界
5.3.3压边间隙
5.3.4凸模力
5.3.5预胀形
5.3.6工艺窗口
5.3.7精度分析
5.3.8壁厚分布
5.3.9成形极限预测
5.3.10失效模式
5.3.11摩擦因数的影响
5.3.12起皱预测
5.3.13平面各向异性
参考文献
第6章典型复杂薄壁构件充液成形分析
6.1小锥形件充液成形分析
6.1.1小锥形件充液成形过程有限元模型
6.1.2基本工艺条件及材料设定
6.1.3初始反胀压力对成形的影响
6.1.4初始反胀高度对成形的影响
6.1.5液室压力变化对成形的影响
6.1.6凸模与板材的摩擦因数对成形的影响
6.1.7小锥形件二次充液拉深过程数值模拟
6.1.8小锥形件初次拉深实验
6.1.9小锥形件二次拉深实验
6.2复杂微小w环成形工艺及其数值模拟
6.2.1W环基本特征描述
6.2.2W环成形工艺及模具结构
6.2.3有限元模型的建立
6.2.4成形模拟实验方案
6.2.5上(下)模A与坯料的摩擦因数对初始成形的影响
6.2.6芯模与坯料的摩擦因数对初始成形的影响
6.2.7中模B与坯料的摩擦因数对初始成形的影响
6.2.8上模A与下模A的开模间距对初始成形的影响
6.2.9成形工艺参数优化
6.2.10液室压力加载曲线对初始成形的影响
6.3铝合金方盒异型件充液成形
6.3.1零件特征及材料参数
6.3.2失稳控制有限元分析
6.3.3实验研究
6.4飞机大型复杂双曲度蒙皮充液成形数值模拟及实验研究
6.4.1零件概述
6.4.2零件成形工艺设计
6.4.3数值模拟
6.4.4实验结果及零件缺陷分析
第7章板材热介质充液成形设备
7.1总体方案确定
7.2加热系统设计
7.2.1加热室主体加热设计
7.2.2底加热板设计
7.2.3模具加热块设计
7.2.4隔热保温设计
7.2.5各加热部分功率设计
7.3冷却系统设计
7.3.1液压机机架部分冷却
7.3.2增压缸部分冷却
7.4液室结构设计及其强度分析
7.5增压装置设计
7.6关键部位高温高压密封设计
7.6.1液室上的静密封
7.6.2增压缸筒上的动密封
7.7液压控制系统及计算机控制系统
7.7.1液压控制系统
7.7.2计算机控制系统
7.2.3模具加热块设计201
7.2.4隔热保温设计201
7.2.5各加热部分功率设计202
7.3冷却系统设计203
7.3.1液压机机架部分冷却203
7.3.2增压缸部分冷却204
7.4液室结构设计及其强度分析205
7.5增压装置设计206
7.6关键部位高温高压密封设计207
7.6.1液室上的静密封207
7.6.2增压缸筒上的动密封208
7.7液压控制系统及计算机控制系统209
7.7.1液压控制系统209
7.7.2计算机控制系统209
第8章板材热介质成形力学解析211
8.1主应力法力学解析基本方程211
8.1.1任意薄壁件回转体平衡方程211
8.1.2塑性方程214
8.1.3应力应变关系215
8.2筒形件充液拉深成形厚度法向应力215
8.3筒形件温热介质拉深典型区域应力解析217
8.3.1基本参数及有限元建模217
8.3.2法兰应力分析219
8.3.3凹模圆角应力分析224
8.3.4筒壁处应力分析232
参考文献235
第9章三向应力状态板材充液成形应力状态及成形性分析236
9.1厚度法向应力对屈服轨迹的影响236
9.1.1筒形件充液拉深在屈服轨迹上的应力分布236
9.1.2平面应力状态下屈服轨迹变化238
9.2板材充液热成形力学特征239
9.2.1(βav,ε)及(η,ω)坐标空间239
9.2.2断裂韧性与βav及η关系定性分析240
9.2.3流体压力对板材充液成形应力状态的影响242
9.2.4有限元结果分析245
9.3(η,ω)空间Mohr-Coulomb断裂轨迹实验确定248
9.4考虑厚度法向应力的Smith模型251
9.4.1Smith模型应力应变分量251
9.4.2平面应力条件下极限应变确定252
9.4.3(βav,ε)及(η,ω)坐标空间253
9.4.4理论预测结果分析254
9.5考虑厚度法向应力的M-K修正模型257
9.5.1M-K模型及理论基础257
9.5.2M-K模型求解258
9.5.3计算过程分析260
9.5.4结果及成形性改善分析261
第10章铝合金板材胀形热塑性变形行为及本构模型研究268
10.1胀形实验获得应力应变曲线的考虑269
10.1.1胀形实验获得应力应变曲线原理269
10.1.2胀形中压力率控制的考虑269
10.2胀形实验270
10.2.1胀形实验机及装置270
10.2.2实验结果272
10.3流动应力计算274
10.3.1胀形试样球形度评估274
10.3.2胀形流动应力典型计算模型比较及流动应力计算276
10.3.3压力率与应变率的关系283
10.4板材热介质成形本构模型285
10.4.1流动应力方程286
10.4.2硬化准则287
10.4.3位错密度演化288
10.4.4基于微观机制的热胀形本构方程289
10.5本构方程参数确定290
10.5.1本构方程离散数值格式290
10.5.2本构模型中材料常数的确定291
10.6本构方程的隐式积分法293
10.6.1径向返回算法293
10.6.2切线刚度矩阵更新297
10.6.3有限元实现步骤301
参考文献303
第11章筒形件热油介质拉深成形过程分析及回弹控制305
11.1充液热成形与热成形及常温充液成形的对比307
11.2充液热成形可控温度场研究313
11.2.1等温温度场对材料性能的影响313
11.2.2差温温度场对材料性能的影响316
金属管材已在航空航天、船舶、化工、汽车等高技术领域得到了广泛应用。然而由于管材塑性弯曲成形是一个典型的非线性变形过程,影响因素错综复杂,弯曲成形后很容易产生回弹、截面畸变、外侧壁厚变薄甚至开裂、内侧壁厚增大甚至起皱等质量缺陷,严重影响弯管零件的装配和使用。基于此,本书主要从管材材料参数、弯管缺陷产生机理、弯管成形质量预测、工艺参数优化等方面对弯管的成形过程进行深入分析和研究,以期对相关技术人员提供参考。
转速对充液比的影响如图4所示:随着转速的提高,旋转热管所需的最佳充液比逐渐减少,原因是由于随着转速的提高,液体所受的离心力随之增加,由此在较小的充液量下,液膜就能在旋转热管管壁形成均匀、较薄的液膜。
计算表明最佳充液量随台阶型旋转热管蒸发段和冷凝段管内径的增大而增大,这一点很好理解管径越大,形成环流液膜所需的充液量就越多,同时内部蒸气空腔也随着管内径的增大而增大因此,充液量随管内径的增大而增大;但最佳充液比则是随着管内径的增大而减小,如图5所示而且,在管径小于25mm左右,充液比下降趋势非常明显,随后随着管径的增大,充液比变化幅度很小,几乎趋向一定值,原因是随着管径的增大液膜厚度减薄,导致总充液量在管内所占的比重下降,而后随着管径的增大,蒸汽空腔也随之增大此时,蒸汽工质对充液比起主导作用,所以总充液比逐渐趋向一定低。
传输功率对最佳充液比的影响如图6所示,随着传输功率的增加,最佳充液比也增大,这是因为旋转热管是依靠其内部工质的蒸发凝结来传递热量的,传输功率越高,所要求的充液量也越多。
工作温度对充液比的影响如图7所示,工作温度对充液量的影响并没有直接反映在理论分析模型中,但工作温度一旦发生变化,工质的所有物性参数都将发生变化,如密度、粘度、汽化潜热。从图5可看出:热管在不同工作温度下工作时所需的充液量没有显著差别。
(1)旋转热管在不同的运行工况下其最佳充液量是不一样的。
(2)旋转热管的最佳充液比随着转速、管径的增加而减小;随着传输功率的增加而增加;工作温度对充液比没有显著影响。
(3)由于没有考虑蒸气对液膜的剪切力,冷凝段传热系数的实验值比模型预测值约小30%左右。