选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

绝缘栅双极晶体管(Insulate-GateBipolarTransistor—IGBT)

绝缘栅双极晶体管(Insulate-GateBipolarTransistor—IGBT)简介

绝缘栅双极晶体管(Insulate-Gate Bipolar Transistor—IGBT)综合了电力晶体管(Giant Transistor—GTR)和电力场效应晶体管(Power MOSFET)的优点,具有良好的特性,应用领域很广泛;IGBT也是三端器件:栅极,集电极和发射极。

查看详情

绝缘栅双极晶体管(Insulate-GateBipolarTransistor—IGBT)造价信息

  • 市场价
  • 信息价
  • 询价

CPU224晶体管

  • CPU224, DC PS, 14DE DC/10DA DC-CN
  • 13%
  • 武汉运通达科技有限公司
  • 2022-12-06
查看价格

CPU226晶体管

  • CPU226, DC PS, 24DE DC/16DA DC-CN
  • 13%
  • 武汉运通达科技有限公司
  • 2022-12-06
查看价格

CPU222晶体管

  • CPU222, DC 24V, 8DE DC/6DA DC-CN
  • 13%
  • 武汉运通达科技有限公司
  • 2022-12-06
查看价格

CPU224XP晶体管

  • CPU224XP, DC PS, 14DE DC/10DA DC/2AE/1AA
  • 13%
  • 武汉运通达科技有限公司
  • 2022-12-06
查看价格

晶体管图示仪

  • XJ-4810
  • 13%
  • 成都天大仪器设备有限公司
  • 2022-12-06
查看价格

自发电一焊机

  • 305A
  • 台班
  • 韶关市2010年8月信息价
  • 建筑工程
查看价格

二氧化碳气保护焊机

  • 电流250A
  • 台班
  • 汕头市2011年3季度信息价
  • 建筑工程
查看价格

二氧化碳气保护焊机

  • 电流250A
  • 台班
  • 广州市2010年3季度信息价
  • 建筑工程
查看价格

二氧化碳气保护焊机

  • 电流250A
  • 台班
  • 汕头市2010年2季度信息价
  • 建筑工程
查看价格

二氧化碳气保护焊机

  • 电流250A
  • 台班
  • 广州市2010年2季度信息价
  • 建筑工程
查看价格

IGBT绝缘双极型晶体管

  • FF300R12KE3
  • 4.0个
  • 2
  • 不含税费 | 不含运费
  • 2014-11-18
查看价格

晶体管图示仪

  • BJ4811A
  • 10台
  • 1
  • 普通
  • 不含税费 | 含运费
  • 2015-12-20
查看价格

晶体管测试仪

  • HP3326A
  • 10台
  • 1
  • 中档
  • 不含税费 | 不含运费
  • 2015-12-18
查看价格

晶体管图示仪

  • XJ-4810A
  • 5台
  • 1
  • 普通
  • 不含税费 | 含运费
  • 2015-10-21
查看价格

晶体管话筒U87Ai

  • 技术指标: 声音工作原理:压力梯度传感器 指向性:全向性,心型,8字型 频响:20Hz-20KHz 灵敏度(1KHz-1KOHM):20/28/22mVPa × 输出阻抗:200ohms 负载阻抗:1000ohms 灵敏度(CCIR486-3):26/23/25dB-A× 灵敏度(DIN/IEC 651):15/12/14dB-A× S/N比(CCIR 486-3):68/71/69dB× S/N比(DIN/IEC 651):79/82/80dB× 最大声压级(THD小于0.5%):117dB(心型) 最大声压级(THD 小于0.5%,预衰减):127dB 最大输出电压:390Mv 麦克风传感器(DIN/IEC651)动态范围:105dB 电压:48v+4V 电流:0.8mA 接头:XLR3F 重量:500克 直径
  • 2只
  • 1
  • 中高档
  • 含税费 | 含运费
  • 2018-07-02
查看价格

绝缘栅双极晶体管(Insulate-GateBipolarTransistor—IGBT)常见问题

查看详情

绝缘栅双极晶体管(Insulate-GateBipolarTransistor—IGBT)文献

绝缘栅双极晶体管的设计要点 绝缘栅双极晶体管的设计要点

绝缘栅双极晶体管的设计要点

格式:pdf

大小:1004KB

页数: 4页

介绍了绝缘栅双极晶体管(IGBT)的基本结构和工作原理;讨论了IGBT各关键参数和结构设计中需要考虑的主要问题;分析了IGBT设计中需要协调的几对矛盾参数的关系以及影响IGBT可靠性的关键因素。

绝缘栅双极晶体管IGBT的发展前景

2010年,中国科学院微电子研究所成功研制国内首款可产业化IGBT芯片,由中国科学院微电子研究所设计研发的15-43A /1200V IGBT系列产品(采用Planar NPT器件结构)在华润微电子工艺平台上流片成功,各项参数均达到设计要求,部分性能优于国外同类产品。这是我国国内首款自主研制可产业化的IGBT(绝缘栅双极晶体管)产品,标志着我国全国产化IGBT芯片产业化进程取得了重大突破,拥有了第一条专业的完整通过客户产品设计验证的IGBT工艺线。该科研成果主要面向家用电器应用领域,联合江苏矽莱克电子科技有限公司进行市场推广,目前正由国内著名的家电企业用户试用,微电子所和华润微电子将联合进一步推动国产自主IGBT产品的大批量生产

查看详情

绝缘栅双极晶体管IGBT的工作特性

静态特性

IGBT 的静态特性主要有伏安特性、转移特性和开关特性。

IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs 的控制,Ugs 越高, Id 越大。它与GTR 的输出特性相似.也可分为饱和区1 、放大区2 和击穿特性3 部分。在截止状态下的IGBT ,正向电压由J2 结承担,反向电压由J1结承担。如果无N+ 缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT 的某些应用范围。

IGBT 的转移特性是指输出漏极电流Id 与栅源电压Ugs 之间的关系曲线。它与MOSFET 的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT 处于关断状态。在IGBT 导通后的大部分漏极电流范围内, Id 与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。

IGBT 的开关特性是指漏极电流与漏源电压之间的关系。IGBT 处于导通态时,由于它的PNP 晶体管为宽基区晶体管,所以其B 值极低。尽管等效电路为达林顿结构,但流过MOSFET 的电流成为IGBT 总电流的主要部分。此时,通态电压Uds(on) 可用下式表示:

Uds(on) = Uj1 + Udr + IdRoh

式中Uj1 -- JI 结的正向电压,其值为0.7 ~1V ;Udr --扩展电阻Rdr 上的压降;Roh --沟道电阻。

通态电流Ids 可用下式表示:

Ids=(1+Bpnp)Imos

式中Imos --流过MOSFET 的电流。

由于N+ 区存在电导调制效应,所以IGBT 的通态压降小,耐压1000V的IGBT 通态压降为2 ~ 3V 。IGBT 处于断态时,只有很小的泄漏电流存在。

动态特性

IGBT 在开通过程中,大部分时间是作为MOSFET 来运行的,只是在漏源电压Uds 下降过程后期, PNP 晶体管由放大区至饱和,又增加了一段延迟时间。td(on) 为开通延迟时间, tri 为电流上升时间。实际应用中常给出的漏极电流开通时间ton 即为td (on) tri 之和。漏源电压的下降时间由tfe1 和tfe2 组成。 IGBT的触发和关断要求给其栅极和基极之间加上正向电压和负向电压,栅极电压可由不同的驱动电路产生。当选择这些驱动电路时,必须基于以下的参数来进行:器件关断偏置的要求、栅极电荷的要求、耐固性要求和电源的情况。因为IGBT栅极- 发射极阻抗大,故可使用MOSFET驱动技术进行触发,不过由于IGBT的输入电容较MOSFET为大,故IGBT的关断偏压应该比许多MOSFET驱动电路提供的偏压更高。

IGBT的开关速度低于MOSFET,但明显高于GTR。IGBT在关断时不需要负栅压来减少关断时间,但关断时间随栅极和发射极并联电阻的增加而增加。IGBT的开启电压约3~4V,和MOSFET相当。IGBT导通时的饱和压降比MOSFET低而和GTR接近,饱和压降随栅极电压的增加而降低。

正式商用的高压大电流IGBT器件至今尚未出现,其电压和电流容量还很有限,远远不能满足电力电子应用技术发展的需求,特别是在高压领域的许多应用中,要求器件的电压等级达到10KV以上。目前只能通过IGBT高压串联等技术来实现高压应用。国外的一些厂家如瑞士ABB公司采用软穿通原则研制出了8KV的IGBT器件,德国的EUPEC生产的6500V/600A高压大功率IGBT器件已经获得实际应用,日本东芝也已涉足该领域。与此同时,各大半导体生产厂商不断开发IGBT的高耐压、大电流、高速、低饱和压降、高可靠性、低成本技术,主要采用1um以下制作工艺,研制开发取得一些新进展。

查看详情

绝缘栅双极晶体管IGBT的工作原理

N沟型的 IGBT工作是通过栅极-发射极间加阀值电压VTH以上的(正)电压,在栅极电极正下方的p层上形成反型层(沟道),开始从发射极电极下的n-层注入电子。该电子为p+n-p晶体管的少数载流子,从集电极衬底p+层开始流入空穴,进行电导率调制(双极工作),所以可以降低集电极-发射极间饱和电压。工作时的等效电路如图1(b)所示,IGBT的符号如图1(c)所示。在发射极电极侧形成n+pn-寄生晶体管。若n+pn-寄生晶体管工作,又变成p+n- pn+晶闸管。电流继续流动,直到输出侧停止供给电流。通过输出信号已不能进行控制。一般将这种状态称为闭锁状态。

为了抑制n+pn-寄生晶体管的工作IGBT采用尽量缩小p+n-p晶体管的电流放大系数α作为解决闭锁的措施。具体地来说,p+n-p的电流放大系数α设计为0.5以下。 IGBT的闭锁电流IL为额定电流(直流)的3倍以上。IGBT的驱动原理与电力MOSFET基本相同,通断由栅射极电压uGE决定。

导通

IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分),其中一个MOSFET驱动两个双极器件。基片的应用在管体的P+和N+ 区之间创建了一个J1结。当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率MOSFET的方式产生一股电流。如果这个电子流产生的电压在0.7V范围内,那么,J1将处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET 电流);空穴电流(双极)。uGE大于开启电压UGE(th)时,MOSFET内形成沟道,为晶体管提供基极电流,IGBT导通。

导通压降

电导调制效应使电阻RN减小,使通态压降小。

关断

当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。在任何情况下,如果MOSFET电流在开关阶段迅速下降,集电极电流则逐渐降低,这是因为换向开始后,在N层内还存在少数的载流子(少子)。这种残余电流值(尾流)的降低,完全取决于关断时电荷的密度,而密度又与几种因素有关,如掺杂质的数量和拓扑,层次厚度和温度。少子的衰减使集电极电流具有特征尾流波形,集电极电流引起以下问题:功耗升高;交叉导通问题,特别是在使用续流二极管的设备上,问题更加明显。

鉴于尾流与少子的重组有关,尾流的电流值应与芯片的温度、IC 和VCE密切相关的空穴移动性有密切的关系。因此,根据所达到的温度,降低这种作用在终端设备设计上的电流的不理想效应是可行的,尾流特性与VCE、IC和 TC有关。

栅射极间施加反压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,IGBT关断。

反向阻断

当集电极被施加一个反向电压时,J1 就会受到反向偏压控制,耗尽层则会向N-区扩展。因过多地降低这个层面的厚度,将无法取得一个有效的阻断能力,所以,这个机制十分重要。另一方面,如果过大地增加这个区域尺寸,就会连续地提高压降。

正向阻断

当栅极和发射极短接并在集电极端子施加一个正电压时,P/NJ3结受反向电压控制。此时,仍然是由N漂移区中的耗尽层承受外部施加的电压。

闩锁

IGBT在集电极与发射极之间有一个寄生PNPN晶闸管。在特殊条件下,这种寄生器件会导通。这种现象会使集电极与发射极之间的电流量增加,对等效MOSFET的控制能力降低,通常还会引起器件击穿问题。晶闸管导通现象被称为IGBT闩锁,具体地说,这种缺陷的原因互不相同,与器件的状态有密切关系。通常情况下,静态和动态闩锁有如下主要区别:

当晶闸管全部导通时,静态闩锁出现。

只在关断时才会出现动态闩锁。这一特殊现象严重地限制了安全操作区。

为防止寄生NPN和PNP晶体管的有害现象,有必要采取以下措施:一是防止NPN部分接通,分别改变布局和掺杂级别。二是降低NPN和PNP晶体管的总电流增益。

此外,闩锁电流对PNP和NPN器件的电流增益有一定的影响,因此,它与结温的关系也非常密切;在结温和增益提高的情况下,P基区的电阻率会升高,破坏了整体特性。因此,器件制造商必须注意将集电极最大电流值与闩锁电流之间保持一定的比例,通常比例为1:5。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639