选择特殊符号
选择搜索类型
请输入搜索
1、快恢复二极管FRD(Fast RecoveryDiode)
快恢复二极管的内部结构与普通二极管不同,它是在P型、N型硅材料中间增加了基区I,构成P-I-N硅片。由于基区很薄,反向恢复电荷很小,不仅大大减小了trr值,还降低了瞬态正向压降,使管子能承受很高的反向工作电压。快恢复二极管的反向恢复时间一般为几百纳秒,正向电流是几安培至几千安培,反向峰值电压可达几百到几千伏。具有开关特性好,反向恢复时间Trr短、正向电流大、体积小、安装简便等优点。可广泛用于开关电源、脉宽调制器(PWM)、不间断电源(UPS)、交流电动机变频调速(VVVF)、高频加热等装置中,作高频、大电流的续流二极管或整流管。
2、超快恢复二极管SRD (SuperfastRecovery Diode)
在快恢复二极管基础上发展而成的,其反向恢复时间Trr比FRD更短,是极有发展前途的电力、电子半导体器件。
3、肖特基二极管SBD(Schottky Barrier Diode)
是肖特基势垒二极管的简称。肖特基二极管是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,肖特基二极管也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。SBD的结构及特点使其适合于在低压、大电流输出场合用作高频整流,在非常高的频率下(如X波段、C波段、S波段和Ku波段)用于检波和混频,在高速逻辑电路中用作箝位。
肖特基二极管的主要优点包括两个方面:
1)由于肖特基势垒高度低于PN结势垒高度,故其正向导通门限电压和正向压降都比PN结二极管低(约低0.2V)。
2)由于肖特基二极管是一种多数载流子导电器件,不存在少数载流子寿命和反向恢复问题。肖特基二极管的反向恢复时间只是肖特基势垒电容的充、放电时间,完全不同于PN结二极管的反向恢复时间。由于肖特基二极管的反向恢复电荷非常少,故开关速度非常快,开关损耗也特别小。
当然,由于肖特基二极管的反向势垒较薄,并且在其表面较易击穿,所以反向击穿电压比较低;肖特基二极管比PN结二极管更容易受热击穿,反向漏电流比PN结二极管大。不过近几年,SBD已取得了突破性的进展,150V和200V的高压SBD已经上市,使用新型材料制作的超过1kV的SBD也研制成功,从而为其应用注入了新的生机与活力。
4、检波二极管
检波二极管是用于把迭加在高频载波上的低频信号检出来的器件,它具有较高的检波效率和良好的频率特性。选用时,应根据电路的具体要求来选择工作频率高、反向电流小、正向电流足够大的检波二极管。虽然检波和整流的原理是一样的,而整流的目的只是为了得到直流电,而检波则是从被调制波中取出信号成分(包络线)。因检波是对高频波整流,二极管的结电容一定要小,通常为点接触二极管;为提高检波效率,要求正向电压降VF要小,所以通常采用正向压降比较低的锗材料,目前,结电容小的肖特基二极管已广泛应用检波领域,如1N60。
5、开关二极管
利用其单向导电特性使其成为了一个较理想的电子开关。半导体二极管导通时相当于开关闭合(电路接通),截止时相当于开关打开(电路切断),所以二极管可作开关用。开关二极管是专门用来做开关用的二极管,它由导通变为截止或由截止变为导通所需的时间比一般二极管短。
开关二极管除能满足普通二极管的性能指标要求外,还具有良好的高频开关特性(反向恢复时间较短),被广泛应用于各类高频电路中。
开关二极管分为普通开关二极管、高速开关二极管、超高速开关二极管、低功耗开关二极管、高反压开关二极管等多种。常用的国产普通开关二极管有2AK系列,高速开关二极管有2CK系列。进口高速、超高速开关二极管有1N系列、1S系列、1SS系列(有引线塑封)和RLS系列(表面安装)等等。
6、PIN型二极管(PIN Diode)
这是在P区和N区之间夹一层本征半导体(或低浓度杂质的半导体)构造的晶体二极管。PIN中的I是"本征"意义的英文略语。当其工作频率超过100MHz时,由于少数载流子的存贮效应和"本征"层中的渡越时间效应,其二极管失去整流作用而变成阻抗元件,并且,其阻抗值随偏置电压而改变。在零偏置或直流反向偏置时,"本征"区的阻抗很高;在直流正向偏置时,由于载流子注入"本征"区,而使"本征"区呈现出低阻抗状态。因此,可以把PIN二极管作为可变阻抗元件使用。它常被应用于高频开关(即微波开关)、移相、调制、限幅等电路中。
1、快恢复二极管FRD(Fast RecoveryDiode)
快恢复二极管的内部结构与普通二极管不同,它是在P型、N型硅材料中间增加了基区I,构成P-I-N硅片。由于基区很薄,反向恢复电荷很小,不仅大大减小了trr值,还降低了瞬态正向压降,使管子能承受很高的反向工作电压。快恢复二极管的反向恢复时间一般为几百纳秒,正向电流是几安培至几千安培,反向峰值电压可达几百到几千伏。具有开关特性好,反向恢复时间Trr短、正向电流大、体积小、安装简便等优点。可广泛用于开关电源、脉宽调制器(PWM)、不间断电源(UPS)、交流电动机变频调速(VVVF)、高频加热等装置中,作高频、大电流的续流二极管或整流管。
2、超快恢复二极管SRD (SuperfastRecovery Diode)
在快恢复二极管基础上发展而成的,其反向恢复时间Trr比FRD更短,是极有发展前途的电力、电子半导体器件。
3、肖特基二极管SBD(Schottky Barrier Diode)
是肖特基势垒二极管的简称。肖特基二极管是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,肖特基二极管也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。SBD的结构及特点使其适合于在低压、大电流输出场合用作高频整流,在非常高的频率下(如X波段、C波段、S波段和Ku波段)用于检波和混频,在高速逻辑电路中用作箝位。
肖特基二极管的主要优点包括两个方面:
1)由于肖特基势垒高度低于PN结势垒高度,故其正向导通门限电压和正向压降都比PN结二极管低(约低0.2V)。
2)由于肖特基二极管是一种多数载流子导电器件,不存在少数载流子寿命和反向恢复问题。肖特基二极管的反向恢复时间只是肖特基势垒电容的充、放电时间,完全不同于PN结二极管的反向恢复时间。由于肖特基二极管的反向恢复电荷非常少,故开关速度非常快,开关损耗也特别小。
当然,由于肖特基二极管的反向势垒较薄,并且在其表面较易击穿,所以反向击穿电压比较低;肖特基二极管比PN结二极管更容易受热击穿,反向漏电流比PN结二极管大。不过近几年,SBD已取得了突破性的进展,150V和200V的高压SBD已经上市,使用新型材料制作的超过1kV的SBD也研制成功,从而为其应用注入了新的生机与活力。
4、检波二极管
检波二极管是用于把迭加在高频载波上的低频信号检出来的器件,它具有较高的检波效率和良好的频率特性。选用时,应根据电路的具体要求来选择工作频率高、反向电流小、正向电流足够大的检波二极管。虽然检波和整流的原理是一样的,而整流的目的只是为了得到直流电,而检波则是从被调制波中取出信号成分(包络线)。因检波是对高频波整流,二极管的结电容一定要小,通常为点接触二极管;为提高检波效率,要求正向电压降VF要小,所以通常采用正向压降比较低的锗材料,结电容小的肖特基二极管已广泛应用检波领域,如1N60。
5、开关二极管
利用其单向导电特性使其成为了一个较理想的电子开关。半导体二极管导通时相当于开关闭合(电路接通),截止时相当于开关打开(电路切断),所以二极管可作开关用。开关二极管是专门用来做开关用的二极管,它由导通变为截止或由截止变为导通所需的时间比一般二极管短。
开关二极管除能满足普通二极管的性能指标要求外,还具有良好的高频开关特性(反向恢复时间较短),被广泛应用于各类高频电路中。
开关二极管分为普通开关二极管、高速开关二极管、超高速开关二极管、低功耗开关二极管、高反压开关二极管等多种。常用的国产普通开关二极管有2AK系列,高速开关二极管有2CK系列。进口高速、超高速开关二极管有1N系列、1S系列、1SS系列(有引线塑封)和RLS系列(表面安装)等等。
6、PIN型二极管(PIN Diode)
这是在P区和N区之间夹一层本征半导体(或低浓度杂质的半导体)构造的晶体二极管。PIN中的I是“本征”意义的英文略语。当其工作频率超过100MHz时,由于少数载流子的存贮效应和“本征”层中的渡越时间效应,其二极管失去整流作用而变成阻抗元件,并且,其阻抗值随偏置电压而改变。在零偏置或直流反向偏置时,“本征”区的阻抗很高;在直流正向偏置时,由于载流子注入“本征”区,而使“本征”区呈现出低阻抗状态。因此,可以把PIN二极管作为可变阻抗元件使用。它常被应用于高频开关(即微波开关)、移相、调制、限幅等电路中。
1)最大整流电流IFM
二极管在长期稳定工作时,允许通过的最大正向平均电流。因为电流通过PN结要引起管子发热,电流太大,发热量超过限度,就会使PN结烧坏,所以在实际应用时工作电流通常小于IFM。
2)最大可重复峰值反向电压VRRM
指所能重复施加的反向最高峰值电压,通常是反向击穿电压VBR的一半。击穿时,反向电流剧增,二极管的单向导电性被破坏,甚至因过热而烧坏。
3)反向恢复时间Trr
当工作电压从正向电压变成反向电压时,电流不能瞬时截止,需延迟一段时间,延迟的时间就是反向恢复时间。Trr直接影响二极管的开关速度,在高频开关状态时,通常此值越小越好。大功率开关管工作在高频开关状态时,此项指标至为重要,Trr越小管子升温越小,效率越高。
4)结电容CJ
图1所示的PN结高频等效电路,其中r表示结电阻,CJ表示结电容,包括势垒电容和扩散电容的总效果,它的大小除了与本身结构和工艺有关外,还与外加电压有关。当PN结处于正向偏置时,r为正向电阻,其数值很小,结电容较大(主要决定于扩散电容CD)。当PN结处于反向偏置时,r为反向电阻,其数值较大,结电容较小 (主要决定于势垒电容CB) 。
5)正向电压降VF
二极管通过额定正向电流时,在两极间所产生的电压降。通常硅材料的二极管VF大于1V,锗材料、肖特基二极管为0.5V左右。
6)反向电流IR
指管子击穿时的反向电流,其值愈小,则管子的单向导电性愈好。反向电流IR与温度有密切联系,温度越高,反向电流IR会急剧增加,所以在使用二极管时要注意温度的影响。
一般半导体器件手册中都给出不同型号管子的参数,这是正确使用二极管的依据。在高频应用场合,要注意不要超过最大整流电流和最高反向工作电压的同时,还应特别注意二极管的最高工作频率(通常由反向恢复时间Trr和结电容CJ决定),否则电路工作不正常或者管子升温严重,影响可靠性。
高频快恢复二极管就是反向恢复速度很快且频率快的意思。快恢复二极管(简称FRD)是一种具有开关特性好、反向恢复时间短特点的半导体二极管,主要应用于开关电源、PWM脉宽调制器、变频器等电子电路中,作为高频...
你好!很高兴为你解答,有在网上帮你查阅相关资料请你参考:高频高压二极管的型号有很多种哦!就是我们上海瑞舒电子而言,二极管的型号都有几十种!那我简单地跟你说说二极管大大的分类吧!主要有整流二极管;开关二...
你好,你问对人了,这用基二机管最合适了,它高频性能很好,适合对高频信号整流,常用的有:1N5817-5819、 SR160。
1)最大整流电流IFM
二极管在长期稳定工作时,允许通过的最大正向平均电流。因为电流通过PN结要引起管子发热,电流太大,发热量超过限度,就会使PN结烧坏,所以在实际应用时工作电流通常小于IFM。
2)最大可重复峰值反向电压VRRM
指所能重复施加的反向最高峰值电压,通常是反向击穿电压VBR的一半。击穿时,反向电流剧增,二极管的单向导电性被破坏,甚至因过热而烧坏。
3)反向恢复时间Trr
当工作电压从正向电压变成反向电压时,电流不能瞬时截止,需延迟一段时间,延迟的时间就是反向恢复时间。Trr直接影响二极管的开关速度,在高频开关状态时,通常此值越小越好。大功率开关管工作在高频开关状态时,此项指标至为重要,Trr越小管子升温越小,效率越高。
4)结电容CJ
图1所示的PN结高频等效电路,其中r表示结电阻,CJ表示结电容,包括势垒电容和扩散电容的总效果,它的大小除了与本身结构和工艺有关外,还与外加电压有关。当PN结处于正向偏置时,r为正向电阻,其数值很小,结电容较大(主要决定于扩散电容CD)。当PN结处于反向偏置时,r为反向电阻,其数值较大,结电容较小 (主要决定于势垒电容CB) 。
5)正向电压降VF
二极管通过额定正向电流时,在两极间所产生的电压降。通常硅材料的二极管VF大于1V,锗材料、肖特基二极管为0.5V左右。
6)反向电流IR
指管子击穿时的反向电流,其值愈小,则管子的单向导电性愈好。反向电流IR与温度有密切联系,温度越高,反向电流IR会急剧增加,所以在使用二极管时要注意温度的影响。
一般半导体器件手册中都给出不同型号管子的参数,这是正确使用二极管的依据。在高频应用场合,要注意不要超过最大整流电流和最高反向工作电压的同时,还应特别注意二极管的最高工作频率(通常由反向恢复时间Trr和结电容CJ决定),否则电路工作不正常或者管子升温严重,影响可靠性。
混合断路器用大功率二极管高频特性研究
本文以混合断路器用大功率二极管为研究对象,详细分析了功率二极管的正向导通过程,建立了正向恢复的集总电荷模型,对影响二极管正向恢复过电压的相关参数进行了探讨,实验结果证明了理论分析的正确性。
答:A、识别正、负极
高频变阻二极管与普通二极管在外观上的区别是其色标颜色不同,普通二极管的色标颜色一般为黑色,而高频变阻二极管的色标颜色则为浅色。其极性规律与普通二极管相似,即带绿色环的一端为负极,不带绿色环的一端为正极。
B、测量正、反向电阻来判断其好坏
具体方法与测量普通二极管正、反向电阻的方法相同,当使用500型万用表R×1k挡测量时,正常的高频变阻二极管的正向电阻为5K~55K,反向电阻为无穷大。
A识别正、负极高频变阻二极管与普通二极管在外观上的区别是其色标颜色不同,普通二极管的色标颜色一般为黑色,而高频变阻二极管的色标颜色则为浅色。其极性规律与普通二极管相似,即带绿色环的一端为负极,不带绿色环的一端为正极。B测量正、反向电阻来判断其好坏具体方法与测量普通二极管正、反向电阻的方法相同,当使用500型万用表R×1k挡测量时,正常的高频变阻二极管的正向电阻为5K~55K,反向电阻为无穷大。
由于现代的开关电源工作频率都在20kHz以上,开关电源中的整流二极管必须具有正向压降低、快速恢复的特点,还应具有足够大的输出功率比起一般的整流二极管。快速恢复整流二极管和超快速恢复整流二极管的反向恢复时间莎Ⅱ减小到了毫微秒级,因此提高了电源的效率可以采用以下三种类型的整流二极管:快速恢复整流二极管;超快速恢复整流二极管;肖特基整流二极管。
快速恢复整流二极管和超快恢复整流二极管在开关电源中作为整流器件使用时是否需要散热器,要根据电路的最大功率来决定。一般情况下,这些二极管在制造时允许的结温在175℃,生产厂家对该指标都有技术说明,以提供给设计者去计算最大的输出工作电流、电压及外壳温度等。
肖特基整流二极管即使在大的正向电流作用下,其正向压降也很低,仅有0.4V左右,而且,随着结温的增加,其正向压降更低,因此,使得肖特基整流二极管特别适用于5V左右的低电压输出电路中。肖特基整流二极管的反向恢复时间是可以忽略不计的,因为此器件是多数载流子半导体器件,在器件的开关过程中,没有清除少数载流子存贮电荷的问题。
肖特基整流二极管有两大缺点:其一,反向截止电压的承受能力较低,目前的产品大约为100V;其二,反向漏电流较大,使得该器件比其他类型的整流器件更容易受热击穿。当然,这些缺点也可以通过增加瞬时过电压保护电路及适当控制结温来克服。表示出了典型的高速整流二极管的特性与参数。
快速恢复和超快恢复整流二极管具有适中的和较高的正向电压降,其范围是从0.8~1.2V。这两种整流二极管还具有较高的截止电压参数。在选择快速恢复整流二极管时,其反向恢复时间至少应该是开关晶体管的上升时间的1/3。这两种整流二极管还减少了开关电压尖峰,而这种尖峰直接影响输出直流电压的纹波。因此,它们特别适合于在小功率的、输出电压在12V左右的辅助电源电路中使用。