选择特殊符号
选择搜索类型
请输入搜索
气液排出法,又被称为泡点法(bubble point)、泡压法、毛细流动法(capillary flow)。其操作方法是:先将多孔材料样品置于润湿剂中,则润湿剂会在毛细力的作用下进入样品孔道。为保证浸润效果,一般需要使用真空浸润仪在负压条件下浸润样品,使样品孔道中的空气体积膨胀从而易于鼓泡排出。润湿剂的选择很重要。首先,它要对样品有足够高的润湿性,即样品材料与润湿剂的接触角要尽量接近于零;其次,它的粘度要足够小,具有极好的流动性;再次,它不能具有太高的挥发性,否则在测量过程中样品会被吹干。当然,润湿剂还应该无毒且不与样品发生相互作用。另外,润湿剂的表面张力要合适,对大孔样品尽量选择表面张力较大的润湿剂,反之亦然。浸润后的样品放入专用的PSDA测试组件,样品密封后通入压缩气体(一般是氮气或压缩空气)。由于样品孔道被液体封堵,需要一定的压力才能开孔,而且孔径越小则对应的开孔压力越大。随着气体压力的增加,最先被打开的孔则是样品的最大孔,最后被打开的是最小孔,因此孔径与开孔压力是一一对应的。通过检测样品在干燥和润湿状态下的气体压力——流量关系曲线,就可以计算样品的孔径分布。
液液排出法,又被称为液液置换法,英文为liquid-liquid displacement,其原理与气液排出法相似,只不过将开孔介质由气体换成液体。其操作方法是:选择两种不互溶的液体分别作为润湿剂和开孔剂,将二者混合并放置一段时间使其相互饱和。选择对样品浸润效果更好的液体作为润湿剂,采用真空浸润仪使样品得到充分浸润,将样品取出并密封后即可进行测量。
基于气液排出法的PSDA孔径分析仪更适宜测量80纳米至300微米孔;基于液液排出法的PSDA孔径分析仪更适宜测量5纳米至200微米孔。一个值得关注的问题是样品的测量压力。无论哪种测量方法,提高样品的测量压力都可以探测更小的孔径。但是,压力过高则会带来一系列问题。首先,有些中空纤维和管式的有机膜样品根本承受不了太高压力,一般不超过5公斤;其次,高压测量也可能给样品的密封带来难题,因为样品往往要进行大力挤压才能密封良好;再次,绝大部分有机膜样品在高压下都可能发生孔道变形甚至封闭,从而使测量结果失去意义。因此小孔径样品最好采用液液排出法,而大孔径样品只能采用气液排出法。
鉴于上述问题,新的PSDA仪器将两种方法相结合,从而能够在无需高压的情况下,方便地测量宽范围孔径,扩展了仪器的使用范围。另外,常规仪器所测出的“孔径”都是指孔道内最细处(或“孔喉”)的尺寸,而PSDA系列仪器还集成了专门测量表面孔直径的专利技术 ,亦即能够测量样品的表面孔径分布。这样,通过对比孔喉与孔口的孔径分布就可以探测过滤材料的孔道结构信息,有助于研究过滤材料的过滤性能。许多高级过滤膜的制备过程中都需要进行多次涂层,材料的表面孔径直接影响着涂层效果,因此孔口的测量对控制和改进涂层质量十分重要。 解读词条背后的知识
污水处理技术尽管很多,但其基本原理主要包括分离、转化和利用。 分离是指采用各种技术方法,把污水中的悬浮物或胶体微粒分离出来,从而使污水得到净化,或者使污水中污染物减少至最低限度。转化是指对已经溶解在水...
IP over SDH基本原理是什么?为了适应数据通信网,尤其是Internet上急剧增长的业务需求以及解决随之而生的网络拥塞、时延和服务质量问题,Internet骨干网需要重新设计以具备高速、扩展、...
点焊,属于压焊分类,电阻焊的一个分支。 将工件装配成搭接接头,并压紧在两电极之间,利用低电压、大电流、短时间,电阻热熔化电极加压部位母材金属,形成熔核焊点的一种焊接工艺。 电阻焊按用途分为:...
曳引电梯基本原理分析
曳引电梯基本原理分析
电梯维修基本原理
电梯有冲顶和蹲底现象,有哪些原因 1.当错层时,到端站正常减速环节不起作用,由强迫减速开关来强迫减速,如果减 速开关距离不够,那么会冲顶或蹲底。 2.编码器信号出问题会导致电梯飞车,如果在端站,那么容易冲顶或蹲底。 3.钢丝绳打滑,到端站由于钢丝绳滑移而导致电梯轿厢减速不下。 4.抱闸制动力不够,停车时抱闸抱不住。 5.编码器信号有问题,电梯减速定位不准,并且减速开关距离不够,导致冲顶或者 蹲底。 6.主板抱闸输出点有粘连现象,导致抱闸释放有滞后。 7.电梯超载运行,但超载开关失效,导致变频器减速不容易减下来。 8.开闸有倒遛现象,导致电梯冲顶或蹲底。 .客户反映电梯 启动有顿感,哪 些原因引 起? ... 1. 低速 PI 调节不当,电梯倒遛,引起顿感。 2.请调大零速段或者低速段的 P,当变频器的 I 的单位为时间时,调小零速段或 者低速段的 I 值,当变频器的 I 的单位为时间
液液置换法孔径分析仪 liquid-liquid displacement porometer
PRM-1200 GL
当前多孔材料被日益广泛地应用在各类工业领域,因此物理性能的表征显得越来越重要,尤其是在过滤性能的分析方面,不仅仅是研究开发如设计新产品,改进性能,还有生产制造中的质量控制。
液液置换法孔径分析仪作为一款最新的仪器,专用于多孔结构的材料的表征,如滤膜、滤材、陶瓷、纸张、纤维、隔膜、无纺等样品的孔径及其分布。 对于多孔材料制造商和终端用户来说,这是一款非常合适的孔径分析仪,综合了两种互为补充的技术,拓宽了毛细管流动孔径仪的应用范围。
两种测量模式:气液、液液置换法
静态容量法比表面及孔径分析仪的使用小经验
静态容量法比表面及孔径分析仪的工作过程(就吸附过程而言)是在计算机控制下,按照设定的压力值逐步往测试系统中通入氮气,(一般是使用氮气,现在也可以使用氪气、氦气等)样品在液氮温度下吸附氮气的过程。在具体测试过程中,不同的操作人员,测试同一样品,其测量结果也有可能不完全相同,其主要原因与操作习惯和测试经验有很大关系,随着对测试过程的熟悉和对操作的熟练掌握,会逐步积累测试经验。
另外,膜材料的表面孔径(亦即"孔口")分布对膜材料与过滤性能也有重要意义,特别是在膜材料表面沉积功能涂层时,更需要测量表面孔口。而GaoQ PSDA系列孔径分析仪还具有表面孔口的测量功能,能够对各种膜材料的孔径分布进行更全面的分析,是膜材料开发、筛选、生产所必不可少的分析仪器。
参考资料:
1. Y. Huang, J. Yu. Method of determining surface pore mouth diameter distribution of porous material. US Patent 8528384, 2009.
2. 黄彦,俞健. 一种测量多孔材料表面孔口直径分布的方法. ZL200810244140.8, 2008.