选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

卡诺循环原理

卡诺循环原理

卡诺循环卡诺循环的效率

通过热力学相关定理我们可以得出,卡诺循环的效率ηc=1-T2/T1,由此可以看出,卡诺循环的效率只与两个热源的热力学温度有关,如果高温热源的温度T1愈高,低温热源的温度T2愈低,则卡诺循环的效率愈高。因为不能获得T1→∞的高温热源或T2=0K(-273℃)的低温热源,所以,卡诺循环的效率必定小于1。

卡诺循环卡诺循环效率一致

可以证明,以任何工作物质作卡诺循环,其效率都一致;还可以证明,所有实际循环的效率都低于同样条件下卡诺循环的效率,也就是说,如果高温热源和低温热源的温度确定之后卡诺循环的效率是在它们之间工作的一切热机的最高效率界限。因此,提高热机的效率,应努力提高高温热源的温度和降低低温热源的温度,低温热源通常是周围环境,降低环境的温度难度大、成本高,是不足取的办法。现代热电厂尽量提高水蒸气的温度,使用过热蒸汽推动汽轮机,正是基于这个道理。

卡诺循环提高热机效率的方向

卡诺定理阐明了热机效率的限制,指出了提高热机效率的方向(提高T1,降低T2,减少散热、漏气、摩擦等不可逆损耗,使循环尽量接近卡诺循环)。成为热机研究的理论依据、热机效率的限制。实际热力学过程的不可逆性及其间联系的研究,导致热力学第二定律的建立。在卡诺定理基础上建立的与测温物质及测温属性无关的绝对热力学温标,使温度测量建立在客观的基础之上。此外,应用卡诺循环和卡诺定理,还可以研究表面张力、饱和蒸气压与温度的关系及可逆电池的电动势等。还应强调,卡诺这种撇开具体装置和具体工作物质的抽象而普遍的理论研究,已经贯穿在整个热力学的研究之中。

查看详情

卡诺循环造价信息

  • 市场价
  • 信息价
  • 询价

圣菲卡诺集成吊顶

  • 厚度(mm):0.6;尺寸:300×300
  • 大美黔城
  • 13%
  • 大美黔城毕节销售处
  • 2022-12-07
查看价格

圣菲卡诺集成吊顶

  • 厚度(mm):0.6;尺寸:300×300
  • 大美黔城
  • 13%
  • 贵州大美前程家居建材有限公司
  • 2022-12-07
查看价格

卡诺克双把手墙出水脸盆龙头

  • K-8892-RP
  • 13%
  • 科勒(中国)投资有限公司
  • 2022-12-07
查看价格

  • 品种:卡基诺金花岗岩;类别:花岗岩;表面处理:抛光面;厚度(mm):23;规格(mm):600×600;
  • m2
  • 泉兴
  • 13%
  • 合肥泉兴建材有限公司
  • 2022-12-07
查看价格

多乐士普林木器底漆

  • 5kg
  • 多乐士
  • 13%
  • 多乐士油漆广州总办处
  • 2022-12-07
查看价格

混浆制作循环设备

  • 台班
  • 韶关市2008年8月信息价
  • 建筑工程
查看价格

混浆制作循环设备

  • 台班
  • 韶关市2008年5月信息价
  • 建筑工程
查看价格

混浆制作循环设备

  • 台班
  • 韶关市2008年4月信息价
  • 建筑工程
查看价格

混浆制作循环设备

  • 台班
  • 韶关市2008年2月信息价
  • 建筑工程
查看价格

混浆制作循环设备

  • 台班
  • 韶关市2007年7月信息价
  • 建筑工程
查看价格

卡诺娃美人蕉

  • 高度cm:40-45冠幅cm:20-25
  • 1000盆
  • 2
  • 中档
  • 含税费 | 含运费
  • 2019-11-28
查看价格

石材(卡诺米黄)

  • 600×600×18
  • 500m²
  • 1
  • 亚欣
  • 中档
  • 不含税费 | 含运费
  • 2021-04-02
查看价格

卡诺娃美人蕉

  • 高度cm:40-45冠幅cm:20-25
  • 1000盆
  • 1
  • 中档
  • 含税费 | 含运费
  • 2019-12-03
查看价格

卡诺娃美人蕉(粉)

  • 盆苗高度(cm)35-40冠幅(cm)30-35
  • 5807株
  • 3
  • 中档
  • 不含税费 | 含运费
  • 2019-09-24
查看价格

卡诺娃美人蕉(黄)

  • 盆苗高度(cm)35-40冠幅(cm)30-35
  • 6956株
  • 3
  • 中档
  • 不含税费 | 含运费
  • 2019-09-24
查看价格

卡诺循环简介

卡诺循环包括四个步骤:等温吸热,在这个过程中系统从高温热源中吸收热量; 绝热膨胀,在这个过程中系统对环境作功,温度降低; 等温放热,在这个过程中系统向环境中放出热量,体积压缩; 绝热压缩,系统恢复原来状态,在等温压缩和绝热压缩过程中系统对环境作负功。卡诺循环可以想象为是工作于两个恒温热源之间的准静态过程,其高温热源的温度为T1,低温热源的温度为T2。这一概念是1824年N.L.S.卡诺在对热机的最大可能效率问题作理论研究时提出的。卡诺假设工作物质只与两个恒温热源交换热量,没有散热、漏气、摩擦等损耗。为使过程是准静态过程,工作物质从高温热源吸热应是无温度差的等温膨胀过程,同样,向低温热源放热应是等温压缩过程。因限制只与两热源交换热量,脱离热源后只能是绝热过程。作卡诺循环的热机叫做卡诺热机。

查看详情

卡诺循环相关公式

由两个定温过程和两个绝热过程(见热力过程)所组成的可逆的热力循环。卡诺循环是19世纪法国工程师S.卡诺提出的,因而得名。卡诺循环分正、逆两种。在压-容(p-V)图和温-熵(T-S)图中(见图), ɑ-b-c-d-ɑ为正卡诺循环,ɑ-b为可逆定温吸热过程,工质在温度T1下从相同温度的高温热源吸入热量Q1;b-c为可逆绝热过程,工质温度自T1降为T2;c-d为可逆定温放热过程,工质在温度T2下向相同温度的低温热源排放热量Q2;d-ɑ为可逆绝热过程,工质温度自T2升高到T1,完成一个可逆循环,对外作出净功W。逆卡诺循环与上述正向循环反向,沿ɑ-d-c-b-ɑ方向,因而Q2是工质从低温热源吸入的热量(通称制冷量),Q1是工质排放给高温热源的热量,W是完成逆向循环所需的外界输入的净功。

正卡诺循环的热经济指标用卡诺循环热效率ηt表示,

逆卡诺循环的热经济指标用卡诺制冷系数ε表示或用卡诺供暖系数ε′表示

根据热力学第二定律,在相同的高、低温热源温度T1与T2之间工作的一切循环中,以卡诺循环的热效率为最高,称为卡诺定理。卡诺循环具有极为重要的理论和实际意义。虽然,完全按照卡诺循环工作的装置是难以实现的,但是卡诺循环却为提高各种循环热效率指明了方向和给出了极限值。

查看详情

卡诺循环原理常见问题

查看详情

卡诺循环创建背景

19世纪初,蒸汽机在工业、交通运输中的作用越来越重要,但关于控制蒸汽机把热转变为机械运动的各种因素的理论却未形成。法国军事工程师萨迪·卡诺(S. Carnot,1796—1832)于1824年出版了《关于火的动力的思考》一书,总结了他早期的研究成果。卡诺以找出热机不完善性的原因作为研究的出发点,阐明从热机中获得动力的条件就能够改进热机的效率。卡诺分析了蒸汽机的基本结构和工作过程,撇开一切次要因素,由理想循环入手,以普遍理论的形式,作出关于消耗热而得到机械功的结论。他指出,热机必须在高温热源和低温热源之间工作,“凡是有温度差的地方就能够产生动力;反之,凡能够消耗这个力的地方就能够形成温度差,就可能破坏热质的平衡。”他构造了在加热器与冷凝器之间的一个理想循环:汽缸与加热器相连,汽缸内的工作物质水和饱和蒸汽就与加热器的温度相同,汽缸内的蒸汽如此缓慢地膨胀着,以致在整个过程中,蒸汽和水都处于热平衡。然后使汽缸与加热器隔绝,蒸汽绝热膨胀到温度降至与冷凝器的温度相同为止。然后活塞缓慢压缩蒸汽,经过一段时间后汽缸与冷凝器脱离,作绝热压缩直到回复原来的状态。这是由两个等温过程和两个绝热过程组成的循环,即后来所称的“卡诺循环”。

卡诺根据热质守恒思想和永动机不可能制成的原理,进一步证明了在相同温度的高温热源和相同温度的低温热源之间工作的一切实际热机,其效率都不会大于在同样的热源之间工作的可逆卡诺热机的效率。卡诺由此推断:理想的可逆卡诺热机的效率有一个极大值,这个极大值仅由加热器和冷凝器的温度决定,一切实际热机的效率都低于这个极值。

查看详情

卡诺循环卡诺意义

卡诺的研究具有多方面的意义。他的工作为提高热机效率指明了方向;他的结论已经包含了热力学第二定律的基本思想,只是热质观念的阻碍,他未能完全探究到问题的最终答案。由于卡诺英年早逝,他的工作很快被人遗忘。后来,由于法国工程师克拉珀珑(B.P.E.Clapeyron,1799—1864)在1834 年的重新研究和发展,卡诺的理论才为人们所注意。克拉珀珑将卡诺循环在一种“压(力)-容(积)图”上表示出来,并证明卡诺热机在一次循环中所做的功,其数值恰好等于循环曲线所围的面积。克拉珀珑的工作为卡诺理论的进一步发展创造了条件。

查看详情

卡诺循环原理文献

不可逆卡诺循环火用经济优化准则 不可逆卡诺循环火用经济优化准则

不可逆卡诺循环火用经济优化准则

格式:pdf

大小:178KB

页数: 3页

不可逆卡诺循环火用经济优化准则——研究了存在热阻、热漏及气缸吸放热等损耗下的不可逆卡诺循环火用经济优化准则.结果表明热机的最太辅出功率不受高、低温热源热漏的影响,但与其热阻成反比;火用损耗率与热阻、热漏成正比 。

可逆卡诺循环的效率及制冷系数的研究 可逆卡诺循环的效率及制冷系数的研究

可逆卡诺循环的效率及制冷系数的研究

格式:pdf

大小:178KB

页数: 3页

可逆卡诺循环的效率及制冷系数的研究——本文以液体表面相为工作物质,论证可逆卡诺循环的效率和可逆卡诺循环的制冷系数。

逆卡诺循环简介

卡诺循环是由四个循环过程组成,两个绝热过程和两个等温过程。它是1824年N.L.S.卡诺(见卡诺父子)在对热机的最大可能效率问题作理论研究时提出的。卡诺假设工作物质只与两个恒温热源交换热量,没有散热、漏气、磨擦等损耗。为使过程是准静态过程,工作物质从高温热源吸热应是无温度差的等温膨胀过程,同样,向低温热源放热应是等温压缩过程。因限制只与两热源交换热量,脱离热源后只能是绝热过程。作卡诺循环的热机叫做卡诺热机。

卡诺进一步证明了下述卡诺定理:①在相同的高温热源和相同的低温热源之间工作的一切可逆热机的效率都相等 ,与工作物质无关,其中T1、T2分别是高温和低温热源的绝对温度。②在相同的高温热源和相同的低温热源之间工作的一切不可逆热机的效率不可能大于可逆卡诺热机的效率。可逆和不可逆热机分别经历可逆和不可逆的循环过程。

卡诺定理阐明了热机效率的限制,指出了提高热机效率的方向(提高T1、降低T2、减少散热、漏气、摩擦等不可逆损耗,使循环尽量接近卡诺循环),成为热机研究的理论依据、热机效率的限制、实际热力学过程的不可逆性及其间联系的研究,导致热力学第二定律的建立。

在卡诺定理基础上建立的与测温物质及测温属性无关的绝对热力学温标,使温度测量建立在客观的基础之上。此外,应用卡诺循环和卡诺定理,还可以研究表面张力、饱和蒸气压与温度的关系及可逆电池的电动势等。还应强调,卡诺定理这种撇开具体装置和具体工作物质的抽象而普遍的理论研究,已经贯穿在整个热力学的研究之中。

逆卡诺循环奠定了制冷理论的基础,逆卡诺循环揭示了空调制冷系数(俗称EER或COP)的极限。一切蒸汽压缩式制冷都不能突破逆卡诺循环。

查看详情

暖通空调知识:卡诺循环概述

卡诺循环(Carnot cycle)是由法国工程师尼古拉·莱昂纳尔·萨迪·卡诺于1824年提出的,以分析热机的工作过程,卡诺循环包括四个步骤:等温吸热,绝热膨胀,等温放热,绝热压缩。即理想气体从状态1(P1,V1,T1)等温吸热到状态2(P2,V2,T2),再从状态2绝热膨胀到状态3(P3,V3,T3),此后,从状态3等温放热到状态4(P4,V4,T4),最后从状态4绝热压缩回到状态1.这种由两个等温过程和两个绝热过程所构成的循环称为卡诺循环。
查看详情

暖通空调知识:卡诺循环简介

卡诺循环包括四个步骤:等温吸热,在这个过程中系统从高温热源中吸收热量;绝热膨胀,在这卡诺循环ts图个过程中系统对环境作功,温度降低;等温压缩,在这个过程中系统向环境中放出热量,体积压缩;绝热压缩,系统恢复原来状态,在等温压缩和绝热压缩过程中系统对环境作负功。卡诺循环可以想象为是工作于两个恒温热源之间的准静态过程,其高温热源的温度为T1,低温热源的温度为T2.这一概念是1824年N.L.S.卡诺在对热机的最大可能效率问题作理论研究时提出的。卡诺假设工作物质只与两个恒温热源交换热量,没有散热、漏气、摩擦等损耗。为使过程是准静态过程,工作物质从高温热源吸热应是无温度差的等温膨胀过程,同样,向低温热源放热应是等温压缩过程。因限制只与两热源交换热量,脱离热源后只能是绝热过程。作卡诺循环的热机叫做卡诺热机。
查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639