选择特殊符号
选择搜索类型
请输入搜索
每填筑一层观测一次,两次填筑间隔时间较长,每3天最少观测一次,填筑完成后,视地基稳定性,半个月或每月观测一次,
1.水准基点的布设水准基点是沉降观测的基准,因此水准基点的布设应满足以下要求:(1)要有足够的稳定性 水准基点必须设置在沉降影响范围以外,冰冻地区水准基点应埋设在冰冻线以下0.5m。(2)要具备检核...
“沉降与稳定观测”
路基沉降观测
1 路基沉降观测实施细则 一.参照执行的标准及规范 1.《新建铁路工程测量规范》(TB10101-99) 2. 《高速铁路工程测量规范》 (TB10601-2009) 3. 《高速铁路工程测量规范条文说明》 (TB10601-2009) 二.路基沉降观测断面设置原则 1.路基沉降观测断面的设置及观测断面的观测内容根据沉降 控制要求、地形地质条件、地基处理方法、路堤高度、堆载预压等 具体情况并结合施工工期确定, 同时还需根据施工核对的地质、 地 形等情况调整或增设。 2.观测断面一般按以下原则设置,同时满足设计文件要求: (1)路基沉降观测断面沿线路方向的间距一般不大于 50m;地 势平坦、地基条件均匀良好的路堑、高度小于 5m 的路堤可放宽到 100m;过渡段和地形地质条件变化较大地段应适当加密。 (2)一个沉降观测单元(连续路基沉降观测区段为一单元)不 少于 2个观测断面。 (3)对地
某路基沉降观测及变形观测实施方案
某路基沉降观测及变形观测实施方案——二、观测范围及主要内容 铁路DK59+949~DK78+360段共计路基填方165万方(不含换填部分),其中有软土路基1段(DK63+140~+202.27段采用深层搅拌桩加固),高填方的分布范围及设置计划见表2-1:
随着航天和航空遥感技术的发展,航天和航空遥感技术逐渐应用于海洋探测,形成天基海洋环境遥感。天基海洋遥感具有观测范围广、重复周期短、时空分辨率高等特点,可以在较短时间内对全球海洋成像,可以观测船舶不易到达的海域,可以观测普通方法不易测量或不可观测的参量,成为继地面和海面观测的第二大海洋观探测平台,也成为发达国家竭力争夺的海洋高科技之一。近年来,美国、欧洲、日本等航天大国相继制定了相应的海洋发展规划。
国外已经陆续发射了多颗海洋水色卫星、海洋地形卫星和海洋动力环境卫星。
1)SeaStar卫星
1997年8月,美国发射了SeaStar海洋水色卫星。星上装载有第二代海洋水色传感器,共有8个通道,前6个通道位于可见光范围,7、8通道位于近红外,中心波长分别为765nm和865nm;地面分辨率为1.1km,该卫星现仍在运行。
2)EOS卫星系列
EOS系列中的EOS-AM卫星主要用于陆地和大气观测、物理和化学、气候环境调查。第一颗EOS-AM卫星Terra于1999年12月18日发射。EOS-AM1卫星装载五个主要仪器:中分辨率成像光谱仪(MODIS-N)、先进星载热发射和反射辐射器(ASTER)、多角度成像光谱仪(MI-SR)、云和地球辐射能量系统(CERES)和对流层污染仪(MOPITT)。EOS-PM卫星共计三颗,第一颗EOS-PM卫星Aqua于2002年5月4日发射;EOS-PM2卫星Aura于2004年7月15发射;EOS-PM3于2010年12月发射。
EOS-PM卫星装载的仪器有:先进的微波探测器(AMSU)、微波湿度探测器(MHS)、云和地球辐射能量系统(CERES)、中分辨率成像光谱仪(MODIS-N)、大气红外探测器(AIRS)、多通道微波成像辐射器(MIMR)。
3)Geosat卫星
1985年3月,美国海军发射了Geosat大地测量卫星,也是一颗海洋地形卫星,星上装载的唯一传感器是一部Ku波段(13.5GHz)的雷达高度计。该卫星以军用为主,用于测量海洋表面有效波高,研究地球重力场、海潮和海面地形等,鉴于卫星轨道误差大(50cm)和数据保密等原因,没有得到广泛应用。1998年2月,美国海军又发射了Geosat的后继卫星GFO-1,运行至今。
航空海洋探测采用固定翼飞机和无人机为传感器载体,具有机动灵活、探测项目多、接近海面、分辨率高、不受轨道限制、易于海空配合而且投资少等特点,是海洋环境监测的重要遥感平台,通过搭载的微波和光学遥测设备,能够实时获取大气海洋环境资料。在军事上,由于无人机可有效减少人员伤亡,得到了广泛应用。典型代表有美国的“全球鹰”、“捕食者”,澳大利亚的Aerosonde等无人机。
常规高空气象观测是指气球携带无线电探空仪,以自由升空方式对自地球表而到儿万米向度空间的大气气象要素(气压、温度、湿度)和运动状态〔风向、风速)等的变化进行观测、收集、处理的活动和工作过程。
(1)高空气象观测站环境要求
①采用定向大线(需达)观侧系统的高空气象观测站应四周开门,障碍物对观测系统大线形成的遮挡仰角不得高于50°,特别是观测站盛行风下风向120°范围内的障碍物对观测系统的大线形成的遮挡仰角不得高于2°。在观测气球施放场地半径50m范围内要求平坦空旷无架空电线、建筑、林木等障碍物。
②采用卫星导航定位系统的.佰空气象观测站应四周开阔,障碍物对卫星导航定位系统接收大线形成的遮挡仰角不得高于5°。在气球施放场地半径50m范围内要求平坦空旷,无架空电线、变压器、建筑、林木等障碍物。
③高空气象观侧站的电磁环境应满足观测系统的要求。由国家无线电频率管理部门审定的.句空气象探空系统所使用的无线电频段,不允许其他部门或个人非法使用。
④高空气象观测站应有钧一合国家供电规范的电源和满足实时资料传输要求的通信方式,水、电、暖、交通等附属设施齐全、便利。
(2)空气象观测站制(储、用)氢要求
①制(储、用)氢室应选择远离繁华的市区、住宅和火源区域;不宜位十明火源的下风向;制〔储、用)氢室与民用建筑的距离必须人一于25m以上,与重要建筑的跄离大于50m以.上。制氖室、储氯室和充气室均为防暴间,应采用轻质屋顶和有利十泄压的门窗,各房间门、窗的而积与房间体积的比值介十0.05--0.22(㎡/m³)。
②制(储、用)氢室通风良好,严禁烟火,室外要有明显的警不杯志,并有健全的安全措施。化学制氧用的苛性钠、矽铁粉必须分别存放。制氯室、储氧室、和充气室必须互为独立。
③制(储、用)氖室供电装置必须符合《爆炸和火灾危险环境电力装置设计规范》等要求,井安装防暴灯和防暴开关。配备必要的消防设施。
④制<储、用)氯室设备要定期的检查、维护和检定。
(1)定时高空气象观测时次是指北京时02时、08时、14时、20时,正点施放时间分别是北京时01时15分、07时15分、13时15分、19时15分。各高空气象观测站具体进行观测的时次及项目由国务院气象主管机构规定。
(2)需临时增加高空气象观测时,须经省、自治区、直辖市以上气象主管机构批准,并报国务院气象主管机构备案。
(1)无线电探空仪:由温度、湿度、气压传感器,测量电路,控制(解码)电路,发射电路和电池等部分组成。探空仪传感器的测量范围分别为:温度从50℃至―90℃;湿度从1%至100%(RH);气压从1050hPa至1hPa,观测精度应符合规定要求。
(2)探空仪基测箱:探空仪基测箱是对探空仪温度、湿度传感器在探空仪施放前与检测箱内温度、湿度的标准器进行比对的综合性检测设备。探空仪基测箱内环境要稳定,智能化程度高,尽可能消除由于操作而引起的误差。定期对基测箱内标准器进行检定。
(3)探空气球:具有良好的弹性、防老化性和耐低温性。高空气象观测站根据其观测业务的要求,选用相应型号的探空气球。探空气球按用途和质量主要有两种:经纬仪测风气球(如:30g气球)和探空气球(如:300g、750g、800g、1600g气球等),经纬仪测风气球为红色、黑色或胶乳本色,探空气球为胶乳本色。
(1)测风雷达:由接收、发射、天线和伺服系统等组成。具备对压、温、湿、仰角、方位角、斜距等基本数据的接收和处理功能。雷达的性能指标应符合其功能规格书的要求。
(2)卫星导航定位接收系统:能够接收和处理卫星导航定位探空仪发回地面的信号,利用卫星星历解算导航电文,通过数据处理软件完成高空气象要素观测。
(3)数据处理终端:数据处理终端由硬件和软件组成。硬件要满足系统的基本配置需求,软件要符合规范要求。
(1)高空压、温、湿观测是由气球携带无线电探空仪升空,将实时观测的压、温、湿等高空气象数据传送至地面接收设备。
(2)高空风观测采用定向天线(雷达)跟踪、经纬仪或卫星导航定位系统等方式。定向天线(雷达)和经纬仪主要通过跟踪气球飞升过程中的仰角、方位角、斜距或高度计算风向、风速。卫星导航定位系统通过接收导航信号,确定气球携带探空仪(应答器)在空间的位移,计算风向、风速。风向是指风的来向,以º为单位,以正北方位为0º,顺时针旋转。风速是指单位时间内空气移动的水平距离,以m/s为单位。
(3)地面数据处理终端对气压、温度、湿度、风向、风速等数据进行处理,获取规定等压面、规定高度、特性层、对流层顶、零度层、空间定位等资料,并形成上传数据文件和秒数据文件等,编制高空压、温、湿记录月报表和高空风记录月报表,形成月数据文件,观测业务人员在规定的时间内完成文件传输。
海洋测量船也叫海洋调查船,是一种能够完成海洋环境要素探测、海洋各学科调查和特定海洋参数测量的舰船,西方早在19世纪后半叶就认识到海洋测量船的作用并开始改装使用测量船。随着社会的进步、科技的发展和军事的需求,海洋测量已从单一的水深测量拓展到海底地形、海底地貌、海洋气象、海洋水文、地球物理特性、航天遥感和极地参数测量,海洋测量船的作用日益突出。
美国拥有的海洋测量船型号多、技术新。1989~1994年短期内装备了6艘现代化测量船(USNS系列)之后,又迅速在两年时间内建造了6艘更先进的5000吨级中远海测量船,每艘船上都装备了浅海回声测深仪、深海回声测深仪、海底浅层剖面仪、浅海多波束系统、深海多波束系统、多普勒声学测流仪、侧扫声呐、全球定位系统、遥控潜水器、重力仪、磁力仪等20多种海洋测量设备和多个测量工作站,可以详尽准确地探测海底地形、海底地貌、海底浅层剖面、海底表层地质等多种要素,在一些中型以上的测量船上还配置有海洋生物和海洋特性等专项调查设备。长期在我国南海活动的“无暇”号是美国海洋测量船的典型代表,其中配有约20名水手,10名技术人员和20名海军人员,装备有大型拖曳阵声纳,可以有效探测和跟踪安静型舰艇,此外,美国海军在航空母舰上也装有先进的测量设备。
俄罗斯的海洋测量船较多,几乎每两三年就造一艘,吨位也比较大,俄罗斯大型测量船常年保持全球海域活动,海洋作业项目是综合性的,主要有海洋测量、救生、地质、气象、水文,生物和化学等方面,搭载的测量设备数量多,但指标和功能一般,不如美、日等国先进。
日本海上自卫队和海上保安厅管辖有20多艘各类测量船,包括“二见”级、“明石”级和“明洋”级等系列,数量位居世界前列,部分由军方管理,部分由地方部门管理。其中“明洋”号装有海底地形测绘系统,通过高频声呐进行海底地形测绘与海底地质探测,配合传感器以及声速仪等测量装备,可快速测量深度与大面积海底地形,建立三维空间海底图像,舰上还配备先进的磁力探测仪,通过水下磁力的对比,就能立刻分辨因潜艇水下活动造成的磁力异常,达到探测敌方潜艇的目的。日本测量船装备的测量设备都很先进,更新速度很快。日本测量船近来频频在周边国家近海出没,主要是探测这些地区海流等情报,这些情报可用作诸如潜艇巡航所需要的水文数据。此外,日本借助测量船成果已出版了1:20万和1:50万的大陆架海底地形图。日本无论是在测量船队的数量上,还是在最新的测量技术上,都努力保持海洋大国的地位。
浮标监测分布面广、测量周期长,已经成为海洋和水文监测的主要手段。浮标集计算机、通信、能源、传感器测量等技术于一身,成为科技含量较高的科技综合体。
法国研制出带溶解氧式传感器的新型浮标Provor CT。该浮标由“法国海洋开发研究所”(IFREMER)与MARTEC集团合作研制,以满足ARGO国际研究计划的需要。最大深度可达2000m,可以预设漂浮深度和时间。浮标通过预先设定的程序,提供所处海洋环境的有关状况,收集有关含盐量、温度和压力的参数。浮标浮出水面之后,通过AR-GOS卫星将数据传出。浮标潜入水中的周期为十天。可以从一艘船上采用一般施放浮标的抛出器向海洋中施放,也可以采用专用的投放箱进行施放。
挪威在欧共体尤里卡海洋计划支持下,研制和开发的SEAWATCH系统主要用于小区域的生态环境监测和预报,配有相应的应用软件,其中使用的TOBIS浮标,带有多种适于生态环境监测的传感器和仪器。
该项技术是上世纪90年代初的重大成果,它的出现催生了国际“阿尔戈”(ARGO)计划,解决了全球次表层温盐同步观测的难题。美国、法国相继研制了几种剖面浮标,最大设计深度2000m,设计工作寿命4~5年。
“阿尔戈”浮标指用于建立全球海洋观测网的一种专用测量设备。Argo是英文“Array for Real-time GeostrophicOceanography”的缩写,其中文含义为“地转海洋学实时观测阵”。它可以在海洋中自由漂移,自动测量海面到2000m水深之间的海水温度、盐度和深度,并可跟踪它的漂移轨迹,获取海水的移动速度和方向。ARGO全球海洋实时观测网是1998年,由美国、法国和日本等国家大气、海洋科学家推出的一个大型海洋观测计划,设想在全球大洋中每隔300km布放一个由卫星跟踪的剖面漂流浮标(即ARGO剖面浮标),总计为3000个,组成一个庞大的ARGO全球海洋实时观测网,以便快速、准确、大范围地收集全球海洋0~2000m上层的海水温度和盐度剖面资料,有助于更细致地了解大尺度实时海洋的变化,提高气候和海洋预报的精度,有效防御全球日益严重的气候和海洋灾害(如飓风、台风、龙卷风、冰暴、洪水和干旱,以及风暴潮、赤潮等)给人类造成的威胁。
中国Argo计划自2002年初组织实施以来,已经在太平洋、印度洋等海域投放了155个Argo剖面浮标,有78个浮标仍在海上正常工作。