选择特殊符号
选择搜索类型
请输入搜索
离子水合是指离子与水分子相互作用并在离子周围形成水化膜的过程。在电解质水溶液中,离子带有正电荷或负电荷,而水分子为极性分子,它们之间必然存在静电引力。当水分子与离子间相互作用能大于水分子间的氢键键能时,水的结构就遭到破坏,在离子周围形成水化膜。水化膜中的水分子又通过氢键吸引邻近的水分子,这种现象称为离子的水合或水化。
由于离子与水偶极子之间电场的相互作用,紧靠离子的第一层水分子定向地与离子牢固结合,不能自由移动,在外电场的作用下只能与离子一起移动,且水分子数不受温度变化的影响,这个过程称为初级水合或化学水合,该区域称为结构形成区或初级区,其对应的水合层有时称为原水合层。原水合层以外的水分子也受到离子的吸引作用,使水的网络结构有一定程度的改变,但由于距离稍远,吸引较弱,与离子联系较松,这些水分子不参与离子的平移运动,这种水化作用称为二级水化或物理水化,该区域称为结构破坏区或次级区。它所包含的水分子数随温度的改变而变化,不是固定值。在该区域之外,离子的电场作用接近于零,水分子不受离子的影响,而保持原有的网络结构,这一区域称为本体区或主体区。2100433B
绿洲离子交换系统是通过阴、阳离子交换树脂对水中的各种阴、阳离子进行置换的一种传统水处理工艺,阴、阳离子交换树脂按不同比例进行搭配可组成离子交换阳床系统,离子交换阴床系统及离子交换混床系统,而混床系统又...
1、电解离子水是一种符合安全的水电解水机利用活性硫作为过滤层,过滤自来水,使之净化达标(达到国家饮用水标准),再通过电解生成两种活性的水,即电解水。集中于阴极流出来的为碱性电解水(供饮用);集中于阳极...
去离子水(deionized water)是指除去了呈离子形式杂质后的纯水。所谓一级还是二级,是根据电导率来分类的。如一般纯度,电导率10us/cm以下,符合国家试验室三级用水要求。中等纯度电...
谈谈去离子水在水电解制氢中的使用
在水电解制氢业务中,用去离子水制氢方便、安全、节能、省钱,制取方法简单,也减轻了台站工作人员的劳动力,在低价买不到蒸馏水的台站值得应用推广。
玻璃离子水门汀用于口腔正畸疗效观察
目的观察玻璃离子水门汀用于口腔正畸的临床疗效。方法随机选取2012年2月至2014年4月口腔正畸患者80例作为研究对象,随机分为对照组和观察组,每组40例。对照组采取牙釉质黏合剂进行口腔正畸治疗,观察组采取玻璃离子水门汀进行口腔正畸治疗,观察比较两组疗效。结果观察组总有效率[92.5%(37/40)]显著高于对照组[72.5%(29/40)],差异有统计学意义(χ2=0.019,P<0.05);观察组患者满意度[85.0%(34/40)]显著高于对照组[62.5%(25/40)],差异有统计学意义(χ2=0.022,P<0.05);观察组托槽脱落率[0(0/40)]、龋齿发生率[2.5%(1/40)]及脱矿情况(0、Ⅰ度分别为28、8例)均优于对照组[分别为25.0%(10/40),30.0%(12/40),0、Ⅰ度分别为0、1例],差异均有统计学意义(P<0.05)。结论玻璃离子水门汀用于口腔正畸临床疗效明显,患者满意度高,能降低托槽脱落率、龋齿发生率,值得临床广泛推广应用。
很多强酸都可能形成相对稳定的水合氢离子盐晶体。这些盐有时被称为酸的一水合物。通常,任何具有109或更高的电离常数的酸都可以形成水合氢离子盐。而电离常数小于109的酸一般不能形成稳定的H3O 盐。
例如,盐酸的电离常数为107,在室温下与水的混合物是液态的。而高氯酸的电离常数为1010,如果液体无水高氯酸和水以1:1的摩尔比结合,则反应形成固体一水合高氯酸,即高氯酸的水合氢离子盐:
H2O HClO4=H3O ·ClO4-
也有很多的含有水合的H3O 的例子,例如HCl·2H2O中含有H5O2 (H3O ·H2O),HBr·4H2O中含有H7O3 (H3O ·2H2O)和H9O4 (H3O ·3H2O)
水合质子
H。F。Halliwell与S。C。Nyburg于1963年推算出质子的水合焙为1091KJ/mol。可见溶液中不存在裸露的H ,而是以水合质子[H(H2O)n] 形式存在,式中n=1、2、3。。。。。。。
根据分子轨道理论计算,离子H3O 呈平面三角形。因此,H9O4 离子中的四个氧在同一平面上,结构如图1(虚线表示氢键):
在垂直于此平面上,还有一水分子与中心氧原子以范德华力连结。
2。水合阳离子
在晶体中水合阳离子的结构与溶液中是不同的。现分述如下:
(1)晶体中水合阳离子结构
在含有结晶水的盐类中,绝大多数的水合阳离子是水合配离子,即水分子藉氧原子的孤对电子向金属阳离子的空轨道(多为杂化轨道)配位,形成电价或共价的配位键,常见水合离子结构如图2所示:
在明矾中,在K 周围的六个H20是靠静电力结合的,一般不称为六水合钾配离子。
(2)溶液中水合阳离子结构
据Bockris研究指出,溶液中水合阳离子的水合水可分为一次水合水和二次水合水(又称为初级水合水和次级水合水)。初级水合水是靠配位键与离子成键(因此,称为化学水合),结合牢固,此水分子失去平动自由度,常伴随离子一起移动,此即水合配离子。次级水合水是通过静电作用(离子一偶极作用)在水合配离子上再结合的水分子。由于相距较远,结合力较弱,常不伴随离子一起移动。例如水合钴离子[Co(OH2)n]2 ,据配位化学知Co2 在水中是稳定的[Co(OH2)6]2 配离子存在,其配位数或水合数为6,这六个水在Co周围呈八面体分布。但用压缩系数法、水化嫡法测得其水合数为10~14,这是二级水合水同时被测出的结果,即还有八个水分子处于初级水合所形成的八个面的中心连线上,通过静电作用而被固定在离Co2 的较远位置上,其结构见图3:
2。水合阴离子的结构
阴离子的电子较多而无空轨道,且半径较大。因此,阴离子与水分子通常靠静电引力或氢键作用形成水合阴离子,一般不能形成配位键,所以水合阴离子的水化数较小(如I-一的水合数常认为是0或1),结构亦简单。
(1)晶体中水合阴离子结构
存在晶体中的结晶水绝大多数是配位于阳离子周围,即以配位水形式存在,少数结晶水是与阴离子以氢键结合,此属于结构水。如胆矾中有四个H2O配位于Cu2 周围,一个H2O与SO42-以氢键键合形成一个水合硫酸根离子,其结构见图4:
也有人认为此结构水是与二个SO42-以氢键相结合。
(2)水溶液中水合阴离子结构
经x-射线测定认为,在水溶液中卤离子(X-)的周围,有六个位于八面体顶点的水分子,其间以弱的静电引力结合,因此,对于水合卤离子一般不写其水合形式:[X(H2O)6]-,而简写为X-。
对于水合氢氧根离子:[OH(H2O)m]-(m=1,2,3。。。。。。)中氢键起着决定性作用。如图5所示:
可见水合氢氧根离子的结构与水合质子结构相似。
总之,一切阴离子在水溶液中也是要发生水合的,只是周围的水分子数较少,结合力较弱而已。
在多核水合离子中存在桥键结构。
(1)双核水合离子结构
已证明Na2CO3·10H2O晶体中存在[NA2(OH2)10]2 离子,水分子近似地以八面体配位在Na 离子周围,其中两个水分子为两个Na 所共有,如图6:
(2)多核水合离子结构
在LiAlO4·3H2O晶体中存在柱形离子,每个Li 由六个H2O配位,如图7:
(3)混合多核水合离子结构
在KF·4H2O晶体中,K 与F-均与六个H2O成八面体配位,其间通过共用顶角和棱边组成长链,而看不到K —F-的直接键合,因此KF·4H2O的晶体结构常用水分子稀释了KF晶格来解释,如图8:
水合离子结构均可用Frank和Wen提出的水化分层模型来解释。其模型示意图如图9。在离子周围的第一层A是冻结在它表面的水分子,是与离子靠配位键结合,故称为化学水化层。第二层B中水分子与离子靠静电引力结合,称为物理水化层。第三层C是不受离子影响的正常水分子层。
水分子作为配体通过配位键与其它质点相结合,而且配位水分子的数目也是由配位键所决定的。对于水合阳离子的形成过程即是:由于水分子是极性分子,存在正负偶极,则溶解后的阳离子和水分子间通过静电引力相互吸引,阳离子吸引水分子的负端,使水分子以配位键配位在阳离子周围形成水合阳离子,如H3O 、[Fe(H2O)6]3 等,一般为简化起见,书写水合离子时,通常可省略配位水分子。
一般来说,离子愈小,它所带的电荷愈多,则作用于水分子的电场愈强,故它的水合热愈大。而碱金属离子是最大的正离子,离子电荷最少,因此它的水合热常小于其它离子,这样由于碱金属、碱土金属元素(Li、Be、Mg除外)电荷低、半径大的特征,相应它们对水分子的吸引力比较弱,大部分不易形成水合阳离子。而对于过渡元素、Al等金属由于它们的电荷高、半径小,对水分子的吸引力强,水合焓较大,所以多数易形成水合阳离子。由此可知金属离子不同,其水合能力也有所不同。