选择特殊符号
选择搜索类型
请输入搜索
备案信息
备案号:1278-1998 2100433B
检测步骤 1)用减量法称取经粉碎至≤71微米且干燥的试样约0.5g (称准至 0.4mg)于干燥的250mL碘量瓶中,记录称取...
楼主你好:一、余氯的测定方法(1) 方法原理余氯在酸性溶液内与碘化钾作用,释放出定量的碘,再以硫代钠标准溶液滴定。2KI+2CH3COOH = 2CH3COOK+2HI2HI+HOCl = I2+HC...
您好楼主,有一种测试总氮的方法是紫外分光光度法,它的试验步骤主要是 准备蒸馏水5ml,其他水样各5ml.加碱性氧化剂2ml,加瓶盖拧紧,然后再在122摄氏度高温消解40分钟,消解完毕后,水冷却2分钟,...
激素测定方法
甲状腺激素及有关蛋白测定 甲状腺分泌的激素包括甲状腺素 (thyroxine,T4) 和少量三碘甲腺原氨酸 (triiodothyronine, T3),它们都是含碘的氨基酸衍生物。甲状腺上皮细胞可通 过细胞膜上的 ?碘泵?主动摄取血浆中的碘。经细胞中过氧化物酶的作用,碘可 转变生成形式尚不清楚的 ?活性碘? ,故临床常利用抑制过氧化物酶的药物如硫 氧嘧啶、他巴唑等治疗甲状腺功能亢进( hyperthyroidism )。?活性碘?与存 在于甲状腺滤泡上皮细胞内的甲状腺球蛋白( thyroglobulin ,TG)上的酪氨酸 残基结合(碘化),逐步缩合生成 T4、T3。含有 T4和 T3的 TG随分泌泡进入滤 泡腔中储存。在垂体分泌的促甲状腺激素 ( thyroid stimulating hormone,TSH) 的作用下, TG被蛋白酶水解,释放出 T4、T3,扩散入血。 血液中的甲状
煤中全水的测定方法
WORD 格式 -可编辑 专业知识 --整理分享 煤中全水分的测定方法 标准号:GB/T211-2007。 代替 GB/T211-1996《煤中全水分的测定方 法》。2008-06-01 实行。 水是煤炭的组成部分,煤中水分含量与其变质程度有一定的关系。煤 中含水量过多, 会增加加工利用的难度, 同时也会给运输、 贮存带来不利 的影响;煤中含水量高, 其发热量就降低, 因为煤在燃烧过程中, 水分蒸 发要消耗相当热量。 全水分还是商品煤的定量指标, 如:洗精煤的计量指 标定在 7.0 %。 煤中水分按其存在状态,可以分为游离水和化合水。 图 1 煤中水分存在状态的分类 游离水:以吸附、附着等机械方式与煤结合的水。 化合水:以化合的方式与煤中矿物质结合的水,也叫结晶水。 例如:硫酸钙( CaSO4·H2O)、高岭土( Al 2O3·2SiO2·2H2O)中 的水。 煤中的游离水又分为外在
《煤的发热量测定方法(GB/T 213-2008)》由中国标准出版社出版。
二氧化碳封存
在二氧化碳封存的研究中,评估二氧化碳被炭或者其他材料的吸附量很重要。高压可模拟CO2注入的地下条件。配置低温/加热浴,可使用户在一定范围的稳定温度内评估二氧化碳的吸收,提供用于计算吸附热的数据。由于在环境温度下,更高的压力会导致二氧化碳冷凝,仪器一般分析50bar以下的等温线。
页岩气
高压甲烷注入页岩样品可产生吸附和脱附等温线。这提供了在特定的压力和温度下页岩中甲烷的量。吸附等温线可用于计算Langumir表面积和页岩体积。Langmuir表面积是假定吸附气体是单分子层吸附时页岩的表面积。Langmuir吸附量是在无限压力下甲烷的吸收量— 可以吸附到样品表面的最大的甲烷量。
煤层甲烷
来自地床的多孔煤样可以分析,以确定他们在高压下甲烷储量。这使用户能得到地下煤层的甲烷吸附和脱附性质,这对确定煤层碳氢化合物的大概储量很有用,动力学数据可显示在特定压力和温度下甲烷在这些多孔炭样品中的吸附和脱附速率。CO2会在较高的压力下冷凝。
储氢
确定多孔炭和金属有机框架(MOFs)等材料的储氢能力,在现代清洁能源需求中很关键。这些材料非常适合用于存储,因为它们可以安全地吸附和脱附氢气。在MOFs中存储的吸附氢比氢气有更高的能量密度,却不需要维持氢液态所需要的低温。软件提供了一个重量百分比图,说明在给定的压力下吸附的气体量—样品储氢量的标准方法。2100433B 解读词条背后的知识
测量比表面积方法有容量法、重量法、气相色谱法等。
BET 比表面积容量测量法,简称BET法,是研究同体表面结构和测量比表面积的重要方法之—。氮气、氪气常作为吸附气体,
BET方程是多分子层物理吸附理论中应用最广泛的等温式,南勃鲁纳尔(Brunauer)、爱曼特(Emmett)、泰勒(Teller)在1938年提出 前提假设是:
(1)吸附利表面是均匀的;
(2)吸附质分子间没柯相互作用;
(3)吸附可以是多分子层的;第二层以上的吸附热等于吸附质的液化热;当吸附达到平衡时。每一层的形成速度与破坏速度相等。
由上述假设出发,可推导出BET二常数公式:
P/V(P-P0)=1/VmC (C-1)P/VmCP0
式中:V为在气体平衡压力为P时的吸附体积量;Vm为单分子层饱和吸附量,常数;P为吸附气体的平衡压力;P0为在吸附温度下吸附质气体的饱和蒸气压(查相关手册);C为吸附热有关的常数。
BET公式适用比压P/P0在0.05~0.35之间。因为P/P0<0. 05,压力太小,不能建立多分子层物理吸附平衡(实为单分子层);当P/P0>0. 35,毛细凝聚现象显著,亦破坏多分子层物理吸附。
通过实验可测得一系列的P和V,若以P/V(P0-P)对P/P0作图可得一直线,由此求得Vm,若Vm以标准状态下的体积(mL)度量,则比表面S为
S=VmNAσ/22400W
式中:NA为阿伏加德罗常数;σ为每个吸附质分子的截面;W为吸附剂质量(g);22400为标准状态下1mol气体的体积(mL)。
其中吸附质分子的截面积σ可由多种方法求出,可利用下式计算:
σ =1.09(M/NAd)2/3
式中:M为吸附质的分子量;d为在吸附温度下吸附质的密度。
对于氮气,在78K时σ常取的值是0.162nm2。