选择特殊符号
选择搜索类型
请输入搜索
独特的工厂制造流程
今天的Naim,在生产方式上有二处与众不同,其一是从设计开始一直到最后成品测试,都在工厂内自己一手完成。当然,这种作法需要很多的仪器与人才投资,不过它的好处是可以全程掌控,发现问题立刻改进。其二就是生产在线的工人并不是每个人只负责某部份的组装,而是从零件的领取开始,就由同一个人从头到尾把这件产品组装起来,一直到成品测试完成。为什么要用这种方式呢。Naim说这样工人在工作时会比较有乐趣与成就感。此外,冤有头债有主,哪部产品出了毛病都可以去找负责人。
深圳市京立通讯器材有限公司的naim音响价格是460元 深圳市鑫业时代智能科技有限公司的naim音响价格是500元 深圳市天龙世纪科技发展有限公司的naim音响价格是480元 以上价格源于网络,仅供参...
naim功放个人感觉还是挺不错的,功放使用的时候高低音都很纯、没有太多嘈杂的声音,声音也很饱满,还原度很高。产品使用操作起来也很方便,即使刚使用的人也可以很快熟练。产品的外观也是很有质感的,设计非常简...
你好,krausnaimer转换开关挺好用的,用转换开关代替刀开关 使用,不仅可使控制回路或测量回路简化,并能避免操作上的差错,还能够减少使用元件的数量。是用转换开关代替两...
钢结构制作标准(制作)
钢结构制作施工工艺 3.1 焊接钢管加工制造工艺 本工程雨棚钢柱采用了大直径焊接钢管,焊接钢管有两种 加工方案,一种采用钢板卷制成小段节,再将多节钢管对接接 长;另一种采用钢板压制,钢管的长度方向环缝较少,纵向只 有一条纵缝。本工程综合考虑采用一条纵缝压制成型的工艺方 案。 压制直缝钢管的制管成型工艺: 3.1.1 下料切割 按照施工工艺要求,下料前充分考虑钢板在压制过程中的 延伸量,减少焊后外圆周长增大引起管径的偏差,采用数控气 割或纸条气割机切割成型,气割对接焊缝处的坡口。 在气割成型的钢板画上钢板压圆的中线及直缝对接的装配 依线(即对接缝各向内 100mm),均打上洋冲眼,铲除割渣及毛 刺,打磨周边坡口面至光洁后,进入下道工序。 3.1.2 预弯加工 将气割成型的钢板复划线,按圆弧周长均分压弯位置线, 并画出压弯位置线。 板运输至 1200t 的预弯机上,用匹配的渐开线模具先压制 钢
钢结构制作标准(制作)
钢结构制作施工工艺 3.1 焊接钢管加工制造工艺 本工程雨棚钢柱采用了大直径焊接钢管,焊接钢管有两种 加工方案,一种采用钢板卷制成小段节,再将多节钢管对接接 长;另一种采用钢板压制,钢管的长度方向环缝较少,纵向只 有一条纵缝。本工程综合考虑采用一条纵缝压制成型的工艺方 案。 压制直缝钢管的制管成型工艺: 3.1.1 下料切割 按照施工工艺要求,下料前充分考虑钢板在压制过程中的 延伸量,减少焊后外圆周长增大引起管径的偏差,采用数控气 割或纸条气割机切割成型,气割对接焊缝处的坡口。 在气割成型的钢板画上钢板压圆的中线及直缝对接的装配 依线(即对接缝各向内 100mm ),均打上洋冲眼,铲除割渣及 毛刺,打磨周边坡口面至光洁后,进入下道工序。 3.1.2 预弯加工 将气割成型的钢板复划线,按圆弧周长均分压弯位置线, 并画出压弯位置线。 板运输至 1200t 的预弯机上,用匹配的渐开线模具先压制
PartⅠ Thermo.responsiveHydrogeIFunctionaIMaterials
1Structure—Function Relationship ofThermo—responsive Hydrogels
1.1Introduction
1.2Effect oflnternal Microstructure on the Equilibrium Thermo—responsive Phase Transition
1.3Effect oflnternal Microstructure on the Dynamic Thermo—responsive Phase Transition
1.4Effect of Internal Microstructure on the Thermo—responsive Controlled—Release Characteristics
1.5 Effect oflnternal Microstructure on the MechanicalStrength of Thermo—responsive Hydrogels
1.6 Summary
References
2Preparation and Properties of Monodisperse Thermo—responsive Microgels
2.1Introduction
2.2Submicron—Sized Monodisperse Thermo—responsiveCore—Shell Hydrogel Microspheres Fabricated via Surfactant—Free Emulsion Polymerization
2.2.1 Preparation of P(NIPAM—co—St) Seeds
2.2.2Preparation of Core—Shell Microsphereswith PNIPAM Shell Layers
2.2.3 Monodispersity ofCore—Shell Microsphereswith P(NIPAM—co—St) Cores and PNIPAMShell Layers
2.2.4 Thermo—responsive Characteristicsof the Core—Shell Microspheres with PNIPAM Shell Layers
2.3 Positively Thermo—responsive Submicron—SizedMonodisperse Core—Shell Hydrogel Microspheres
2.3.1Preparation ofPositively Thermo—responsive Submicron—Sized Monodisperse Core—ShellHydrogelMicrospheres
2.3.2 Morphological Analyses of the Microspheres
2.3.3 Positively Thermosensitive Swelling Characteristics
2.4 Monodisperse Thermo—responsive HydrogelMicrospheres and Microcapsules Preparedvia Membrane Emulsification
2.4.1Strategies for Preparation ofMonodisperse PNIPAM Microspheres and Microcapsules via Membrane Emulsificatio
2.4.2Morphology of Prepared MonodispersePNIPAM Microspheres
2.4.3Morphology of Prepared Monodisperse PNIPAM Microcapsules
2.4.4 Effect of Freeze—Drying and RehydratingTreatment on the Thermo—responsiveCharacteristics of PNIPAM Microspheres
2.5 Monodisperse Thermo—responsive Hydrogel Microspheres and Microcapsules Fabricated with Microfluidics
2.5.1Microfluidic Fabrication ofMonodisperseThermo—responsive Microgels with TunableVolume—PhaseTran sitionKinetics
2.5.2 FabricationofMonodisperse Thermo—responsive Microgelsin a Microfluidic Chip
2.5.3Fabrication ofMonodisperse Microspheres with PNIPAM Core and Poly(2—HydroxyethylMethacrylate) (PHEMA) She
2.6 Summary
References
3 Flow and Aggregation Characteristics of Thermo—responsive Microgels During Phase Transition
3.1 Introduction
3.2Flo and Aggregation Characteristics of Thermo—responsive Spheres During the Phase Transition
3.2.1 Preparation of Monodisperse PNIPAMHydrogel Spheres
3.2.2Thermo—responsive Volume—Phase Transition Characteristics of PNIPAM Hydrogel Spheres
3.2.3 Flow Characteristics of PNIPAM HydrogelSpheres During the Phase Transitionin a Transparent Glass Pipe
3.3Flow Characteristics of Thermo—responsiveMicrospheres in Microchannel During the Phase Transition
3.3.1 Synthesis of Microspheres in a SimpleMicrofluidic Device
3.3.2 Flow Characteristics of PNIPAMMicrospheres in Horizontal Microchannel at Low Reynolds Number of Fluid
3.3.3 Effect of the Diameter Ratio of PNIPAMMicrosphere to Microchannel on the FlowCharacteristics
3.4 Effects of Microchannel Surface Property on FlowBehaviors of Thermo—responsive Microspheres During the Phase Tran sition
3.4.1 Modification of Inner Surface of Glass Microchannel
3.4.2 Characterization of Wettability and Roughness of Modified Glass Microchannels
3.4.3 Effects of Surface Wettability and Roughnessof Microchannel on the Average Velocity of Fluid in Microchannel
3.4.4 Effect of Surface Wettability and Roughness of Microchannel on Aggregation Behaviorsof PNIPAM Microspheres During the Phase Transition
3.4.5Effect of Surface Wettability of Microchannel on Flow Characteristics of PNIPAM Microspheres
3.4.6 Effect of Surface Roughness of Microchannel on Flow Characteristics of PNIPAM Microspheres
3.4.7 Flow Behaviors of PNIPAM Microspheresin Microchannel with Hydrophobicand Rough Surface During the Phase Transition
3.5Summary
References
4Polyphenol—Induced Phase Transition of Thermoresponsive Hydrogels
4.1 Introduction
4.2Phase Transition Behaviors of PNIPAM MicrogelsInduced by Tannic Acid
4.2.1Preparationof MonodispersePNIPAM Microgels
4.2.2 Dynamic Isothermal Volume—Phase Transition of PNIPAM Microgels Induced by TA
4.2.3Equilibrium Isothermal Volume—PhaseTransition of PNIPAM Microgels Induced by TA
4.2.4Thermosensitive Phase Transition of PNIPAMMicrogels in TA Solutions
4.3 Phase Transition Behaviors of PNIPAM MicrogelsInduced by Ethyl Gallate
4.3.1 Preparation of PNIPAM Microspheres and Core—Shell PNIPAM Microcapsules
4.3.2 Thermo—responsive Phase Transition Behaviors of PNIPAM Microspheres in EG Solution
4.3.3The Intact—to—Broken TransformationBehaviors of Core—Shell PNIPAM Microcapsules in Aqueous Solutionwith Varying EG Concentration
4.4 Summary
References
5 Functional Membranes with Thermo—responsive Hydrogel Gates
5.1Introduction
5.2Functional Membranes with Thermo—responsive Hydrogel Gates Fabricated by Plasma—InducedPore—Filling Graft Polymerizatio
5.2.1Regulation of Response Temperatureof Thermo—responsive Membranes
5.2.2 Effect of Grafting Degree on the Thermo—responsive Gating Characteristics
5.2.3Gating Characteristics of Thermo—responsiveMembranes with Grafted Linearand Cross—linked Hydrogel Gates
5.2.4Membranes with NegativelyThermo—responsive Hydrogel Gates
5.2.5 Composite Thermo—responsive Membrane System
5.2.6Thermo—responsive Affinity Membrane
5.3Functional Membranes with Thermo—responsive Hydrogel Gates Fabricated by Atom—Transfer Radical Polymerization
5.4Functional Membranes with Thermo—responsive Hydrogel Gates Fabricated by Free—Radical Polymerization
5.5Summary
References
6Functional Microcapsules with Thermo—responsiveHydrogel Shells
6.1 Introduction
6.2 Functional Microcapsules with GraftedThermo—responsive Hydrogel Chains in the Porous Membranes as Gates
6.3 Functional Microcapsules with Thermo—responsiveMicrogels in the Membranes as Gates
6.4Functional Microcapsules with Thermo—responsiveCross—linked Hydrogels as Membranes
6,5Summary
References
……
PartⅡ pH—Responsive Hydrogel Functional Materials
PartⅢThermo—/pH—Dual—Responsive HydrogelFunctional Materials
PartⅣAlcohol—Responsive Hydrogel Functional Materials
PartⅤ Glucose—Responsive Hydrogel Functional Materials
PartⅥ Ion—Recognizable Hydrogel Functional Materials
PartⅦ Molecular—Recogruzable Hydrogel Functional Materials
Index
编辑
Dibetou(巴西),Bibolo(喀麦隆),Embero、Nivero、(赤道几内亚、利比里亚),Dubini-biri、Mpengwa(加纳),Apopo、Sida、Anamenila(尼日利亚),Mnaimei(塞拉利昂),Bombulu、Lifaki-muindu(扎伊尔),Africanwalnut(英国),Tigerwood(美国、英国),Dilolo(法国)