选择特殊符号
选择搜索类型
请输入搜索
把直流电逆变成交流电的电路称为逆变电路。在特定场合下,同一套晶闸管变流电路既可作整流,又能作逆变。
变流器工作在逆变状态时,如果把变流器的交流侧接到交流电源上,把直流电逆变为同频率的交流电反送到电网去,叫有源逆变。如果变流器的交流侧不与电网联接,而直接接到负载,即把直流电逆变为某一频率或可调频率的交流电供给负载,则叫无源逆变。交流变频调速就是利用这一原理工作的。有源逆变除用于直流可逆调速系统外,还用于交流饶线转子异步电动机的串级调速和高压直流输电等方面。
利用晶闸管电路把直流电转变成交流电,这种对应于整流的逆向过程,定义为逆变。例如:应用晶闸管的电力机车,当下坡时使直流电动机作为发电机制动运行,机车的位能转变成电能,反送到交流电网中去。又如运转着的直流电动机,要使它迅速制动,也可让电动机作发电机运行,把电动机的动能转变为电能,反送到电网中去。
交流电转换为直流电的方法就是整流;而直流电转换为交流电的方法是逆变。
整流,全波整流电路就是利用二极管单向导通的特性,用4个二极管连成一个桥式整流电路(见下图),使输入端是交流电流,其波形是正弦波,电流方向是交变的,而输出端波形电流变为同一方向,再经过滤波电路将波形滤掉之后可得到直流电。
大致是一个低压直流转换为一个高压交流的过程 首先 直流电压分两路 一给前级IC供电产生一个KHZ级的控制信号 一路到前级功率管 ...
首先逆变器就是把直流电变化成交流电的一个装置。不管是三相还是单相其工作原理都差不多。直流电通过PWM脉宽调制的技术把它变化成正弦交流电,中间用到电力电子器件,通过正弦波的脉宽调制来控制电力电子器件的导...
由直流电变为交流电的电源叫逆变电源。通常是利用晶闸管电路把直流电转变成交流电,这种对应于整流的逆向过程,定义为逆变。例如:应用晶闸管的电力机车,当下坡时使直流电动机作为发电机制动运行,机车的位能转变成...
源逆变也有无源逆变。比如说直流电压,经过一个简单的单相H型晶闸管桥,H的横就是那个输出,H的竖线上各有四个晶闸管,编号上12,下34,则分别开通14和23就得到正负相隔的输出电压和电流了。
逆变电源中的脉宽调制技术应用
基本型方波逆变电源电路简单,但输出电压波形的谐波含量过大,亦既THD(电流谐波畸变率)过大;移相多重叠加逆变电源输出电压波形的谐波含量小,亦即THD小,但电路较复杂。而PWM脉宽调制式逆变电源,既有电脑的电路,又可使输出电压波形,因而得到了广泛的应用。
所谓PWM脉宽调制技术(Pulse Width Modulation,PWM),是用一种参考波(通常是正弦波,有时也采用梯形波或注入零序谐波的正弦波或方波等)为调制波(Modulating Wave),而以N倍于调制波频率的三角波(有时也用锯齿波)为载波(Carrier Wave)进行波形比较,在调制波大于载波的部分产生一组幅值相等,而宽度正比于调制波的矩形脉冲序列用来等效调制波,用开关量取代模拟量,并通过对逆变电源开关管的通/断控制,把直流电变成交流电,这种技术就叫做脉宽控制逆变技术。由于载波三角波(或锯齿波)的上下款度是线性变化的,故这种技术就叫做脉宽控制逆变技术。由于载波三角波(或锯齿波)的上下宽度是线性变化的,故这种调制方式也是线性的,当调制波为正弦波时,输出矩形脉冲序列的脉冲宽度按正弦规律变化,这种调制技术通常又称为正弦脉宽调制(Sinusoida PWM)技术。
逆变电源常见问题
u 受到外界干扰
逆变器可能会因使用场合中的一些强电磁波的干扰,如附近的马达、功率变频器、强磁场等。
尽量远离类似上面的设备。
u 逆变器没有反应
1. 电池和逆变器没有接好,重新接好。
2. 电池的极接反了,保险丝熔断。更换保险丝。
u 输出电压低
1. 过载,负载电流超过标称电流,关掉部分负载重新启动。
2. 输入电压太低。确保输入电压在标称电压范围之内。
u 低电压报警
1. 电池没电了需要充电。
2. 电池电压太低或者接触不良,再充电,检查电池端子或者用干布清理端子。
u 逆变器无输出
1. 电池电压太低,重新充电或者更换电池。
2. 负载电流太高,关闭部分负载重新启动逆变器。
3. 逆变器过温保护。让逆变器降温一段时间,并放在通风的地方。
4. 逆变器启动失败,重新启动。
5. 端子接反,保险丝熔断,更换保险丝。
u 逆变器不工作
检查电源开关,保险丝和电池连接线或者电烟器。
逆变器无直流输入
此类故障经常发生的原因是蓄电池未正确连接,逆变器的正负极必须与蓄电池正负极连接正确,正极接正极,负极接负极,正确连接后开关合上,基本就可以解决此类故障。
逆变器输入输出保险丝熔断
此类故障一般明显可以看到,只要更换保险丝即可。
蓄电池电压高于额定直流输入电压20%
逆变器有一个工作电压范围,一般为额定直流电压+-10%之间,如若高于此电压,需要更换蓄电池组或者更换逆变器,以防止对机器造成损坏。
蓄电池电压低于额定直流输入电压15%
此类问题主要是由于蓄电池电量不足,只需要给蓄电池组充电即可。
负载功率过大
这类问题主要是前期对负载功率计算不足造成,需要增大逆变器的功率或者减小负载功率即可。
逆变电源广泛运用于各类:电力、通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。
逆变电源包括:
电力专用逆变电源
通信专用逆变电源
动力型工频逆变电源
工业正弦波逆变电源
方波逆变电源
医用逆变电源的作用和特点
国内的医疗设备大多采用220V市电供电。由于各种不同类型的医疗设备供电需求,使用最多的是集中式供电结构。即由一个集中的电源变换器产生所需各种电压等级的输出电压。由于它成本低廉、效率高、输出电压可调整、输出噪音小、动态响应快等非常适合医疗类设备使用,是医疗类设备目前使用最多的一种供电方式。医疗设备电源方案确定需要考虑下面几个问题。
安全与隔离是普通商用电源与医疗电源的一个重大差别。通常,除了一些实验分析类仪器,医疗设备大多安装在病床或手术台附近,离人和操作者的距离比较近,外壳常常会被触及到。医疗设备内部有各种各样的强,弱电的部件,如果强弱电之间的隔离或者是外壳材料绝缘有问题,就会非常危险。安全测试方面一般医疗设备电源都必须得到UL60601-1、C-UL、EN60601-1等安全认证。输入输出端必须要4,000V以上的隔离电压,而且要求对地漏电流低,符合安规爬电距离要求。而对于强电部分需采用双重绝缘,尤其有可能与设备外壳接触的部分更要加强绝缘设计。
电磁兼容性和抗电磁干扰能力
要为医疗类设备选择或者搭建一个好的供电系统,必须注意提高电源的电磁兼容性和抗电磁干扰能力。主要要从以下几个方面来考虑:设计。PCB的设计和布局,一般的电源中都会包含一些高频信号,PCB上的任何印制线都可以起到天线的作用,印制线的长度和宽度都会影响其阻抗和感抗,从而影响频率响应,及时通过直流信号的印制线也会从临近的印制线耦合到射频信号并引起电路的问题。所以医疗类电源必须选择大品牌,具有很强研发实力的公司的产品,这些产品在设计和生产工艺方面都能保证良好的品质。
逆变电源广泛运用于各类:电力、通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。
为了抑制开关电源产生的辐射,消除电磁干扰对医疗设备内其他电子设备的影响,最好的办法就是对电源的磁场进行屏蔽,然后将整个屏蔽罩与医疗设备的机壳或地连为一体,这是个事半功倍的办法。
现阶段一般医疗设备类电源都需要经过FCC-B、CISPR22-B、EN55011550226120461000等电磁兼容性及抗电磁干扰能力测试。选择完成这些测试的产品不仅能确保不对设备内其它电子元器件产生电磁影响,而且能减少医疗设备研发周期及推向市场前的受检时间。
尺寸及高功率密度
医疗类设备除了向多功能、高检测和调整精度方向发展外,更小尺寸及便于携带也是一个发展方向。这就要求医疗设备电源必须在更小的板载面积条件下拥有更高的功率输出。
市场上的集中式供电电源产品大多是标准输出,即使有部分电源产品可以通过外接电路的方式进行输出调节,调节范围也不大,而且稳定性也存在问题。如果碰到了低电压、大电流或者极高的直流电压情况该如何处理,当然可以采用定制方式,但价格相当高,客户能否接受。
如今医疗设备的价格由于竞争的激烈,已经逐步透明,特别是一些家用的小型医疗设备,价格已经非常平民化、大众化。所以这就要求医疗设备的重要组成部分--电源,必须要有有竞争力的价格。
电力专用逆变电源
电力专用逆变电源 BND系列电力专用逆变电源 介绍:电力专用逆变电源是电力系统新一代的专用电源,主要针对电力系 统的特点和要求设计制造,适合电力系统对供电设备高质量、高可靠性的 要求,广泛应用于电力系统通信、载波、监控、继电保护以及事故照明, 也可为发电厂交流润滑电泵、交流风机、水泵提供不间断电力。并广泛应 用于航空航天、金融系统、办公自动化控制、医疗卫生、军事科研等各个 领域。 产品特色: 采用美国 INTEL公司微处理器,德国西门子 IGBT 纯正弦波输出,波形纯净、稳定 输出采用隔离变压器,输出电压稳定,安全 全桥电路结构,适用于任何负载 交流旁路不间断切换 电路结构紧凑、高效率 , 具有完善的保护功能 原理图 转换电路 旁路输入 AC220V/380V输出 输入滤波 全桥逆变 输出滤波 输出隔离 隔离驱动 保护电路 CPU控制开关电源 隔离反馈 直流220V/110V输入 产 品
电力专用逆变电源
电力专用逆变电源 BND系列电力专用逆变电源 介绍:电力专用逆变电源是电力系统新一代的专用电源,主要针对电力系 统的特点和要求设计制造,适合电力系统对供电设备高质量、高可靠性的 要求,广泛应用于电力系统通信、载波、监控、继电保护以及事故照明, 也可为发电厂交流润滑电泵、交流风机、水泵提供不间断电力。并广泛应 用于航空航天、金融系统、办公自动化控制、医疗卫生、军事科研等各个 领域。 产品特色: 采用美国 INTEL公司微处理器,德国西门子 IGBT 纯正弦波输出,波形纯净、稳定 输出采用隔离变压器,输出电压稳定,安全 全桥电路结构,适用于任何负载 交流旁路不间断切换 电路结构紧凑、高效率 , 具有完善的保护功能 原理图 转换电路 旁路输入 AC220V/380V输出 输入滤波 全桥逆变 输出滤波 输出隔离 隔离驱动 保护电路 CPU控制开关电源 隔离反馈 直流220V/110V输入 产 品
《多功能数字波控弧焊逆变电源》的目的在于克服2013年之前技术中的缺点与不足,提供一种多功能数字波控弧焊逆变电源。该逆变电源使焊机具备优异的一致性、可靠性和动态响应能力,基于电弧瞬态能量的精细化控制技术,优化利用焊接电弧能量,提高热效率,保证良好的电弧稳定性,实现多种电流脉冲波形输出控制,适应不同金属材料焊接,以获得优质的焊缝焊接质量。
《多功能数字波控弧焊逆变电源》通过下述技术方案予以实现:一种多功能数字波控弧焊逆变电源,其特征在于:包括主电路、控制电路和送丝机模块;所述主电路包括依次连接的三相共模滤波模块、一次整流滤波模块、高频全桥逆变模块、功率变压器模块和二次整流滤波模块;所述控制电路包括ARM控制系统模块,以及与ARM控制系统模块连接的数字化面板模块、高频逆变驱动模块和送丝机驱动模块;
其中,所述主电路的三相共模滤波模块与三相交流输入电源连接;二次整流滤波模块的输出端一与送丝机模块的输入端连接,输出端二与焊接负载的输入端一连接;送丝机模块的输出端与焊接负载的输入端二连接;送丝机模块还与送丝机驱动模块信号连接;所述电压电流检测模块用于实时检测主电路电压电流值;所述高频全桥逆变模块与控制电路的高频逆变驱动模块连接,以实现由控制电路控制逆变电源的输出特性。
《多功能数字波控弧焊逆变电源》逆变电源具有优异的一致性、动态响应性能和扩展性;基于电弧瞬态能量的精细化控制技术,优化利用焊接电弧能量,提高热效率,保证良好的电弧稳定性,实现多种电流脉冲波形输出控制,适应不同金属材料焊接,以获得优质的焊缝焊接质量。同时通过采用数字化面板模块设置逆变电源输出特性参数,实现了全数字化控制,实现了多种焊接电流波形调节,使该发明逆变电源适应于多种金属材料的焊接,节省生产投入成本,提高生产效率。
所述控制电路还包括过流保护检测模块和过压欠压缺相检测模块;所述过流保护检测模块分别与ARM控制系统模块、高频逆变驱动模块和高频全桥逆变模块连接;所述过压欠压缺相检测模块分别与ARM控制系统模块和三相共模滤波模块连接。
所述控制电路还包括用于实时监测高频全桥逆变模块温度的温度检测模块;所述温度检测模块与ARM控制系统模块连接。
优选的方案是:所述ARM控制系统模块采用型号为STM32F405RGT6的ARM芯片;所述ARM芯片内固化有运行于FreeRTOS嵌入式实时操作系统的多功能数字波控软件系统。《多功能数字波控弧焊逆变电源》逆变电源以型号为STM32F405RGT6的ARM芯片为核心,型号为STM32F405RGT6的ARM芯片是ARM CortexTM-M4架构的32位RISC嵌入式微处理器,将FreeRTOS嵌入式实时操作系统移植到焊机的控制中,使焊机具备优异的一致性、可靠性和动态响应能力。
所述ARM芯片的ADC端口直接与电压电流检测模块相连;ARM芯片的GPIO端口分别与过流保护检测模块、过压欠压缺相检测模块和温度检测模块直接相连;ARM芯片的PWM端口分别与高频逆变驱动模块和送丝机驱动模块相连;ARM芯片的CAN端口与数字化面板模块直接相连。
《多功能数字波控弧焊逆变电源》的原理是:主电路采用全桥逆变式拓扑结构,采用高空载慢送丝的引弧方式。全桥逆变脉宽的调制是通过在FreeRTOS嵌入式实时操作系统中进行实时任务调度,通过PID控制算法来实现给定信号与反馈信号的比较运算,把PID控制器运算输出结果通过ARM控制系统模块的TIMER模块输出数字化的PWM信号,通过高频逆变驱动模块进行隔离放大,控制高频全桥逆变模块的功率开关管IGBT按照一定的时序导通与关闭,实现高频交直流转变。电流反馈是在逆变电源输出端用电压电流检测模块检测电压电流输出值,得到采样信号,经过放大、比较,再输送到ARM控制系统模块,改变高频全桥逆变模块中功率管IGBT的导通与截止时间,实现占空比的调节以达到功率调节的目的,使逆变电源的瞬时输出能量保持稳定,达到焊接过程精细化控制的目的。
1、《多功能数字波控弧焊逆变电源》逆变电源对焊接电弧的瞬态能量进行实时精细化控制,一阶阶跃响应实现无超调控制,使整个焊接过程中电弧能量得到精确和柔性控制,保证良好的电弧稳定性和挺度,更易于获得优质的焊接质量;
2、《多功能数字波控弧焊逆变电源》逆变电源实现了全数字化控制,具有优异的一致性、动态响应性能和扩展性;
3、《多功能数字波控弧焊逆变电源》逆变电源实现了多种焊接电流波形调节控制,针对不同焊丝,通过专家数据库调出对应的焊接波形,以适应各种焊接金属材料,实现多种焊接方法,一机多用,节省生产投入成本,提高生产效率。
弧焊逆变电源以其高效率电能转换著称,随着功率控制器件向实用化和大容量化方向发展,弧焊逆变电源也将跨入高频化、大容量的时代。弧焊逆变电源对电网来说,本质上是一个大的整流电源,由于电力电子器件在换流过程中产生前后沿很陡的脉冲,从而引发了严重的谐波干扰。逆变电源的输入电流是一种尖角波,使电网中含有大量高次谐波。高次电压和电流谐波之间存在严重相移,导致焊机的功率因数很低。低频畸变问题是当前电力电子设备的一个共性问题,目前在通信行业、家电行业都已引起相当的重视。另外,目前逆变焊机多采用硬开关方式,在功率元件的开关过程中不可避免地对空间产生谐波干扰。这些干扰经近场和远场耦合形成传导干扰,严重污染周围电磁环境和电源环境,这不仅会使逆变电路自身的可靠性降低,而且会使电网及临近设备运行质量受到严重影响。
(1)逆变电源内部干扰源逆变电源是一个强电和弱电组合的系统。在焊接过程中,焊接电流可达到几百甚至上千安培。因电流会产生较大的电磁场,特别在逆变主电路采用高逆变频率的焊接电源系统中,整流管整流,高频变压器漏磁,控制系统振荡,高频引弧,功率管开关等均会产生较强的谐波干扰。
其次,钨极氩弧焊机如果采用高频引弧时,由于焊机利用频率达几十万赫兹,电压高达数千伏的高频高压击穿空气间隙形成电弧,因此高频引弧也是一个很强的谐波干扰源。对于计算机控制的智能化弧焊逆变电源来说,由于采用的计算机控制系统运行速度越来越高,因此控制板本身也成了一个谐波干扰源,对控制板的布线也提出了较高的要求。
(2)逆变电源外部干扰源电网上的污染对电源系统来说是较为严重的干扰,由于加到电网上的负载千变万化,这些负载或多或少对电网产生谐波干扰,如大功率设备的使用使电网电压波形产生畸变,偶然因素造成瞬时停电,高频设备的开启造成电网电压波形具有高频脉冲、尖峰脉冲成分。另外在焊接车间内,由于不同焊接电源在使用时接地线可能相互连接,因此如不采取相应的措施,高频成分的谐波信号很容易窜入控制系统,使电源不能正常工作,甚至损坏。