选择特殊符号
选择搜索类型
请输入搜索
根据半导体中电子从价带跃迁到导带的路径不同,可以将半导体分为直接带隙半导体和间接带隙半导体。图2(a)显示的跃迁中,电子的波矢可以看作是不变的,对应电子跃迁发生在导带底和价带顶在k空间相同点的情况,导带底和价带顶处于k空间相同点的半导体通常被称为直接带隙半导体。从图2中(b)显示的电子跃迁路径中可以看出,电子在跃迁时k值发生了变化,这意味着电子跃迁前后在k空间的位置不一样了,导带底和价带顶处于不同k空间点的半导体通常被称为间接带隙半导体。对于间接带隙半导体会导致极大的几率将能量释放给晶格,转化为声子,变成热能释放掉,而直接带隙中的电子跃迁前后只有能量变化,而无位置变化,于是便有更大的几率将能量以光子的形式释放出来。因此在制备光学器件中,通常选用直接带隙半导体,而不是间接带隙半导体。
能带理论定性地阐明了晶体中电子运动的普遍特点,简单来说固体的能带结构主要分为导带、价带和禁带三部分如概述图所示。原子中每一电子所在能级在固体中都分裂成能带。这些允许被电子占据的能带称为允带。允带之间的范围是不允许电子占据的,这一范围称为禁带。因为电子的能量状态遵守能量最低原理和泡利不相容原理,所以内层能级所分裂的允带总是被电子先占满,然后再占据能量更高的外面一层允带。被电子占满的允带称为满带。原子中最外层电子称为价电子,这一壳层分裂所成的能带称为价带。比价带能量更高的允许带称为导带;没有电子进入的能带称为空带。任一能带可能被电子填满,也可能不被填满,满带电子是不导电的。泡利不相容原理认为,每个能级只能容纳自旋方向相反的两个电子,在外加电场上,这两个自旋相反的电子受力方向也相反。它们最多可以互换位置,不可能出现沿电场方向的净电流,所以说满带电子不导电。同理,未被填满的能带就能导电。金属之所以有导电性就是因为其价带电子是不满的。
图1中(a)表示绝缘体的能带结构,绝缘体的能带结构特点在于导带和价带之间的带宽比较大,价带电子难以激发跃迁到导带,导带成为电子空带,而价带成为电子满带,电子在导带和价带中都不能迁移。因此绝缘体不能导电,一般而言当禁带宽度大于9 eV时,固体基本不能导电。而对于图1中(b)所示的半导体能带结构,其禁带宽度较小,通常在0~3 eV之间,此时价带电子很容易跃迁到导带上,同时在价带上形成相应的正电性空穴,导带上的电子和价带中的空穴都可以自由运动,形成半导体的导电载流子。对于图1中(c)所示的金属能带结构,导带和价带之间发生重叠,禁带消失,电子可以无障碍地达到导带,形成导电能力。同体的能带结构决定了固体中电子的排布、运动规律及导电能力,因此研究固体的能带结构能够获得固体中电子的一些重要信息和结论。
单个自由原子的电子占据了原子轨道,形成一个分立的能级结构。如果几个原子集合成分子,他们的原子轨道发生类似于耦合振荡的分离。这会产生与原子数量成比例的分子轨道。当大量(数量级为1020或更多)的原子集合成固体时,轨道数量急剧增多,轨道相互间的能量的差别变的非常小。但是,无论多少原子聚集在一起,轨道的能量都不是连续的。
这些能级如此之多甚至无法区分。首先,固体中能级的分离与电子和声原子振动持续的交换能相比拟。其次,由于相当长的时间间隔,它接近于由于海森伯格的测不准原理引起的能量的不确定度。
物理学中流行的方法是从电子和不带电的原子核出发,因为它们是一系列自由的平面波组成的波包,可以具有任意能量,并在带电后衰减。这导致了布拉格反射和带结构。
我认为应该分成三个工程来做,这样比较清楚,在取费的时候也不会出现混乱。
砖混结构、钢筋混凝土结构、框架结构、框剪结构、钢结构、核心筒结构等。
房屋结构主要分为以下门类: 1、木结构(住宅):指建筑物中竖向承重结构的墙、柱等采用砖或砌块砌筑,楼板、屋架等用木结构。 2、砖混结构(住宅):建筑中竖向承重结构的墙、柱等采用砖或砌块砌筑,柱、梁、楼...
下面以闪锌矿为例来看一看硫化矿物的能带结构。图3是闪锌矿的能带结构。费米能级以下是价带,费米能级以上是导带,导带与价带之间是禁带。由图3可见闪锌矿导带最低点和价带最高点都位于Gamma点,表明闪锌矿是直接带隙半导体。闪锌矿的价带主要由三部分组成,其中位于-11.70 eV附近的价带部分主要是由硫原子3s和部分锌原子4s轨道组成;位于-5.90 eV附近的价带部分由锌原子3d轨道和部分硫原子3p轨道构成;价带的其余部分由硫原子3p和锌原子4s轨道构成。闪锌矿的导带主要是由硫原子3p和锌原子4s轨道构成。电子转移方向是从高能级流向低能级,因此高能级轨道具有还原性,低能级轨道具有氧化性。在能带图上,能级越低,越稳定。 2100433B
按建筑结构分类
按建筑结构分类 钢结构: 是指承重的主要构件是用钢材料建造的,包括悬索结 构。 钢、钢筋混凝土结构 是指承重的主要构件是用钢、钢筋混凝土 建造的。 钢筋混凝土结构: 是指承重的主要构件是用钢筋混凝土建造的。 包括薄壳结构、 大模板现浇结构及使用滑模、 升板等建造的钢筋混凝 土结构的建筑物。 混合结构: 是指承重的主要构件是用钢筋混凝土和砖木建造的。 如一幢房屋的梁是用钢筋混凝土制成, 以砖墙为承重墙, 或者梁是用 木材建造,柱是用钢筋混凝土建造。 砖木结构:是指承重的主要构件是用砖、木材建造的。如一幢房 屋是木制房架、砖墙、木柱建造的。 其他结构:是指凡不属于上述结构的房屋都归此类。如竹结构、 砖拱结构、窑洞等。 框剪结构与框架结构的主要区别就是多了剪力墙 ,框架结构的竖 向刚度不强 ,高层或超高层的框架结构建筑更是如此 !为了解决这个问 题故使用剪力墙 .你可以去了框架结构, 框架结构住
钢结构分类
钢结构分类 2012 年 08月 14日 星期二 (1)大跨结构 结构跨度越大,自重在荷载中所占的比例就越大,减轻结构的自重会带来明显的经济效益。钢材强度高 结构重量轻的优势正好适合于大跨结构, 因此钢结构在大跨空间结构和大跨桥梁结构中得到了广泛的应用。 所采用的结构形式有空间桁架、网架、网壳、悬索(包括斜拉体系)、张弦梁、实腹或格构式拱架和框架 等。 (2)工业厂房 吊车起重量较大或者其工作较繁重的车间的主要承重骨架多采用钢结构。另外,有强烈辐射热的车间, 也经常采用钢结构。结构形式多为由钢屋架和阶形柱组成的门式刚架或排架,也有采用网架做屋盖的结构 形式。 近年来,随着压型钢板等轻型屋面材料的采用,轻钢结构工业厂房得到了迅速的发展。其结构形式主要 为实腹式变截面门式刚架。 (3)受动力荷载影响的结构 由于钢材具有良好的韧性,设有较大锻锤或产生动力作用的其他设备的厂房,即使屋架跨
固体材料的能带结构由多条能带组成,能带分为传导带(简称导带)、价电带(简称价带)和禁带等,导带和价带间的空隙称为能隙。
能带结构可以解释固体中导体、半导体、绝缘体三大类区别的由来。材料的导电性是由“传导带”中含有的电子数量决定。当电子从“价带”获得能量而跳跃至“传导带”时,电子就可以在带间任意移动而导电。
一般常见的金属材料,因为其传导带与价带之间的“能隙”非常小,在室温下 电子很容易获得能量而跳跃至传导带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。
分子计算中的布居分析方法不能直接应用于能带计算,分析能带结构引入了一系列的方法,这些方法一般都表示成图线,图线上的数据源于对k空间中各个点的计算结果。计算大量的点可以得到很好的图线,但为了节省计算时间可以加大取点间隔,然后用内插法平滑曲线。通常谨慎的做法是逐次加大取点紧密程度计算几次,看看图线是否有显著变化。
一个重要的问题是,一个给定能级有多少可能的轨道。这可以用态密度图(DOS)来表示,?
图34.2。图中往往用虚线来表示费米(Fermi)能级。具有半满能带的材料是导体,但如果它们只有少量的未充满的轨道,就可能是不良导体。有时特别轨道对DOS的贡献会在同一张图上用阴影区域或虚线画出。
另一个问题是被充满的轨道是成键性的还是反键性的。这可用晶体轨道重叠分布图(COOP)来表示,如图34.3。一般正的成键区域画在零值线的右边。
费米能级是填充轨道的最高能级,类似于HOMO能级。如果轨道是半充满的,其能级就会出现在k空间的点的集合上,称为费米面。
晶体计算方面的进展没有分子计算方面的多。经常计算的一个性质是体积弹性模量,它反映了材料的强度。
在预测热力学条件下会形成什么产物时,可能需要预测哪种晶体结构最稳定,这是一项艰巨的任务。到目前为止,还没有提出一个完全自动的的方法试遍由特定的元素集合组成的所有可能的晶体结构。即便这种尝试可以实现,进行计算所需要消耗的电能也是巨大的。这样的研究经常用于测试一系列相似的结构,结果无论如何总是正确的。能量最小化也会用到,但须保证起始结构具有正确的对称性。
有时并不只对无限体系感兴趣,更关心于晶体中的异类物质,比如晶体吸收的额外的原子。
这时晶体的无限平移对称性并不严格正确。最广泛应用的模拟方法是Mott-Littleton缺陷方法,这是用来进行晶格局部区域能量最小化的一种方法。这种方法包含了对晶体中其余部分所受的极化的连续性描述。
在分子中可能的电子能级是分立的、量子化的。但分子变得更大时,这些能级相互就会靠得更近。在晶体里能级之间靠得非常近以致于形成了连续的带子,这些带子的能量具有实际的利用目的。因此,晶体的电子结构可以用其能带结构来描述。
能带的数学描述无限晶体的电子结构用能带图来描述,能带图给出k空间--叫作布里(Brillouin)渊区--中各点的电子轨道的能量。这与角分辨光电子能谱实验结果相一致。
k空间不是一个物理空间,它是对轨道成键性质的一种描述。一个无限长的原子链中,轨道?
相位可以是从全成键到全反键(这两个极端情况分
别记为k=0和k=π/a)之间的任何状态。其中有时是一条直线有三个成键原子再接着一个反?
的原子的结合方式或者其他什么结合方式。定义了
k空间后,对于某些原子k=0对应于全成键的对称性,而对于其他原子则是全反键对称的,这
取决于原子轨道的对称性。
对于三维晶体k空间是三维的,(kx,ky,kz)。k空间中的某些点具有特定的名称。在各维
空间中,符号"Γ"指的都是k=0的点,"Μ"指的
都是k=π/a的点。"Χ"、"Y"、"Κ"和"Α"指的是k=0在某些方向上以及k=π/a在其
他方向上的点,这取决于晶体的对称性。典型的能
带结构图--称为spaghetti图--画出了沿着这些k点所对应的轨道能量,见图34.1。这些
符号在参考文献中有更相详细地讨论。
由于轨道展开成了能带,用于形成σ键或σ反键的轨道就展开成更宽的能带,π轨道则形成
更窄的能带,而δ轨道则形成最窄的轨道。
有时候研究者只需要知道晶体的带隙。一旦一条完整的能带计算出来,通过观察自然就很容
易知道带隙了。但是计算全部能带可能会花费大量的工作,得到许多不必要的信息。估算带隙有一些方法,但并不完全可靠。
只在布里渊区的Μ、Κ、Χ和Γ点进行能带结构计算还不足以形成一条能带,因为任何给定的能带的能量极小点和极大点有时会落在这些k点之间。如果计算方法需要较高级别的CPU计算,有时就会进行这样的有限计算。例如,在确定?否有必要进行高级别的完全计算时,就有可能先进行这种选点的高级别计算。
有些研究者用分子的计算结果来估计从HOMO到LUMO的带隙。当分子变得更大时,这种带隙会变得更小,因此就有可能对一些按大小递增的分子进行量子力学计算,然后通过外推预测无限体系的带隙,这对于通常不是晶体的聚合物很有用。这些体系也用到一维能带结构,因此必须假定它们是晶体或者至少是高度的有序的。
从头算和半经验计算可以得出能量,因而可以用来计算能带结构。但是如果计算一个分子的能量耗时较长,那么计算布里渊区的一系列点则耗时更长,要是不需要太精确的结果,可以选用扩展休克尔方法来计算。在能带计算中扩展休克尔方法有时叫作紧束缚近似。近年来更倾向于使用从头算或密度泛函(DFT)方法。
就象分子计算那样,从头算需要用基组和一定的方法来计算能量,但计算能带时基组的选择与计算分子时有些不同。拥有弥散函数的大基组在相邻的晶胞之间由于存在较大的重叠而发生收缩,这会造成线性相关性,使得方程不能自洽求解,为此常常用中小基组来解决上述问题。用于分子计算的原子轨道线性组合(LCAO)方案也可用于晶体的计算,但这并不是唯一的选择。
事实上,以原子为中心的基函数组成布洛赫(Bloch)函数,布洛赫(Bloch)函数满足体系的平移对称性,但仍然使用LCAO的叫法。
其他有关基组的流行方法时平面波函数方法。之所以提出平面波是因为平面波反映了晶体的无限平移对称性。最早的平面波计算假定薛定谔方程在每个原子的附近区域是球对称的(松饼罐头势),但却无法保证电荷守恒。对于离子晶体松饼罐头计算能给出合理结果,但随着计算技术和硬件的发展,使人们可以进行更加精确可靠的计算,也就不再采用松饼罐头方法了。还在使用的一种方法是扩展平面波(APW)方法,是在Vigner-Seitz晶胞上的晶胞计算。某些类型的问题有许多其他基函数方法。
非常复杂的体系都已经进行了能带结构的计算,然而大多数软件都不够自动化或不够快,不足以用于临时进行能带计算。计算能带的程序的输入比大多数计算分子的程序要复杂得多。分子几何构型的输入采用分数坐标,还必须提供原胞格子矢量和晶体学角度,还可能有必要提供k点的列表及其简并度。检查各个输入中控制收敛的选项对于计算精度的影响是最保险的措施,软件附带的手册可能会给出一些推荐值。研究者要想完成能带计算应当投入大量时间,尤其在学习使用软件阶段。
正如上面所提到的,随着时间推移人们倾向的模拟晶体的计算方法是不断变化的。下面是基函数方法的列表,按照出现的先后顺序排列:
1. 原子轨道线性组合方法(LCAO)
2. 扩展平面波方法(APW)
3. Korringa、Kohn和Rostoker的格林(Green)函数方法(有时叫作KKR方法)
4. 正交平面波方法(OPW)
5. 赝势方法
6. 各种近似或经验方法
任何基于轨道的方法都可用来计算晶体结构,而趋势是向着更加精确的方法。一些APW和格函数方法使用了经验参数,因而将它们划到半经验方法中去。按照使用偏好的顺序,最常用的方法是:
1. 半自洽从头算方法或DFT方法
2. 半经验方法
3. 使用专门的或模拟的势能的方法