选择特殊符号
选择搜索类型
请输入搜索
工业锥束CT无损检测系统部件,接收X射线成像。系统细节分辨率0.6mm,几何测量精度±0.08mm,零件差异对测量精度有一定影响。 2100433B
探测器分辨率1536×1920,象素127μm,采集速度7.5fps(1×1),15fps(2×2)。
X射线探测器交流,搜索xrayfpd
国内外DR平板探测器,无线DR平板探测器,瓦里安平板探测器,非晶硒平板探测器,非晶硅平板探测器,碘化铯平板探测器,线阵平板探测器,影像增强器,影像成像系统.
布置在桥架里的是线形感温探测器,感烟的都是点型的,早的时候用的是多烟感、温感之类的就是典型的啊,红外对射的就是线型的。
光伏型硅X射线探测器
介绍了垂直多结器件的结构,给出了热迁移制结的工艺条件和结果,特别介绍了处理器件电极引线的隔离线方法,解决了经过热迁移掺杂后光刻电极套不准的难题,以及把所有p型区域连接起来的问题,达到了敏感区金属零遮挡的目的.同时分析了工艺条件对器件性能的影响.通过对敏感区和无效区的计算和对比,对器件的几个电流参数进行了详细的计算;对两种靶材的标识谱在器件内产生的光电子的收集效率做了计算,对器件的光谱响应度也作了计算和分析;同时对器件窗口材料的选择进行了详细讨论;最后叙述对器件进行的实验验证,通过对金属模板上模拟缺陷的测量,证明器件有足够的灵敏度和分辨率.
PerkinElmer发布新型X射线探测器
PerkinElmer光电公司推出了一种高速度、高数据传输的数字X射线探测器,应用于工业和医学领域,如:管线检测、诊断及治疗医学成像等。这种无定形硅基(a-Si)数字X射线探测器能提供30fps拍摄速率、16bit分辨率的实时图像。该探测器能抗
x射线探测器是一种将X射线能量转换为可供记录的电信号的装置。它接收到射线照射,然后产生与辐射强度成正比的电信号。 通常探测器所接受到的射线信号的强弱,取决于该部位的人体截面内组织的密度。密度高的组织,例如骨骼吸收x射线较多,探测器接收到的信号较弱;密度较低的组织,例如脂肪等吸收x射线较少,探测器获得的信号较强。这种不同组织对x射线吸收值不同的性质可用组织的吸收系数m来表示,所以探测器所接收到的信号强弱所反映的是人体组织不同的m值,从而对组织性质做出判断。
气体探测器均以气体作为探测介质,内部多充有以多种惰性气体为主混合气体,并在探测器两极加上电压小室。其小室的形状大小结构因气体探测器的不同会有加大差别。在探测器使用时我们多将内部气体大气压加至2到3个大气压,这样可以有效提高气体探测器的探测效率。气体探测器的工作原理是通过收集电离电荷获取核辐射信息来实现的,因为射线粒子在灵敏体积内产生电子离子对,在电离室中电子离子对由于收集电场的作用分别向内壁和中心丝运动,从而通过探测器捕捉到所需信息。气体探测器不同类型的电离室在结构上基本相同.其典型结构分为平板型与圆柱型,如图2所示。在这些结构类型中均包括:
高压极(K):正高压或负高压;
收集极(C):与测量仪器相联的电极,处于与地接近的电位;
保护极(G):又称保护环,处于与收集极相同的电位;
负载电阻(RL):电流流过时形成电压信号。
气体探测器具有制备简单、性能可靠、成本低廉、使用方便等优点,有广泛的应用。20世纪70年代以来,气体探测器有很大发展,在高能物理和重离子物理实验中获得新的应用,并应用于核医学、生物学、天体物理、凝聚态物理和等离子体物理等领域。
在介绍闪烁探测器之前,必须先了解光脉冲,当闪烁物质受到放射线或其他高能粒子辐照时会激发阻止介质原子,被激发的原子由激发态退激回到基态时会形成荧光脉冲[7]。闪烁探测器正是利用某些物质在核辐射的作用下会发光的这一特性工作的。闪烁探测器主要是由被封闭在一个不透明的外壳里的闪烁体、接收光的收集系统、光—电子转换的光探测光电器件(如光电管、光电倍增管、光电二极管),以及光电探测器后续电路输出系统等组合而成。这些器件组合在一起被统称为闪烁探测器系统。闪烁探测器的结构示意图如图3所示。
闪烁探测器的工作原理是:放射线入射到闪烁体后发出荧光;荧光光子被收集到光电倍增管的光阴极,通过光电效应转换出光电子;光电子通过电子运动并在光电倍增管各级间倍增,最后在阳极输出回路输出信号。闪烁探测器的探测动态范围很宽,对能量在1eV到1GeV范围内的辐射粒子都适用[8],如今己成为最常用的探测器,在高能物理学、地球物理学、辐射医学、放射化学等众多领域都得到了广泛的应用。其主要应用类型种类可分为:能谱测量、剂量测量、强度测量、时间测量。闪烁体探测器主要具备以下几方面的优点:
其外形结构和大小的制作相对随意,可以做成任意大小和形状;
探测效率高,适合于测量不带电粒子,如γ射线、X射线和中子等;三是时间特性好,有的探测器(如塑料闪烁体、BaF2)能够实现ns的时间分辨。基于以上优点,闪烁体探测器被广泛应用于空间X射线探测领域。
半导体探测器是以半导体材料为探测介质的辐射探测器。锗和硅是我们最通用的半导体探测材料,其基本原理与气体电离室相类似。晶体计数器可以认为是半导体探测器的前身,20世纪初期人们发现在核辐射下可以通过某些固体电介质产生电导现象,在这之后金刚石、氯化银等晶体计数器又相继被人们发明。可是我们至今无法解决晶体极化效应的问题,所以目前可以达到实用水平的只有金刚石探测器。20世纪中期有人在使用α粒子照射锗半导体点接触型二极管时,发现有电脉冲输出。1958年第一个金硅面垒型探测器被设计完成,直到20世纪60年代初期锂漂移型探测器被研制成功后,半导体探测器才得到迅速的发展。
半导体探测器的工作原理如图4所示。将工作电压加在电极K和A上后,固体介质内部会形成很强的电场区。这时进入介质后的带电粒子,因为电离作用从而会产生电子——空穴对,并且在强电场作用下,电子和空穴将各自按照自身相反的电极方向迅速移动,并产生感应电荷,随之形成信号脉冲输出在负载RL上。由于半导体产生的电信号同入射粒子的能量损失成正比关系,所以我们可以由所测到的电信号计算出入射粒子的能量大小及其它相关性质。半导体探测器的优缺点均十分明显,其能量分辨率高,探测效率高(可与闪烁探测器相比拟),体积小,较快的响应时间等优点是其他设备所无法比拟的。但同时探测器尺寸无法随意增大,器件本身容易被射线损伤,价格偏高等劣势,也严重制约了其发展与应用。
CT机种的X射线探测器结构如图1所示。位于管套中的真空管为旋转阳极式的射线管。管内设有阳极、阴极、灯丝和转子,在真空管外部对应阳极转子处设有定子线圈。定子线圈通入电流产生旋转磁场,在铜质的转子中产生。
一个典型的探测器包括:闪烁体、光电转换阵列和电子学部分。此外还有软件、电源等附件。目CT中常用的探测器类型有两种:
(1)是收集荧光的探测器,称闪烁探测器,也叫固体探测器。
(2)是收集气体电离电荷的探测器称为气体探测器。它收集电离作用产生的电子和离子,记录由它们的电荷所产生的电压信号。