选择特殊符号
选择搜索类型
请输入搜索
针对金属泡沫循环变形行为实验研究和本构描述方面的不足,通过系统的实验研究,了解材循环过程中的变形行为特征和演化规律,并讨论加载应力、孔隙率和孔洞结构的影响,揭示其循环变形变形的内在机理;基于实验揭示的规律,在多机制本构模型的框架下,将塑形变形分为基体材料变形和孔洞结构变形两部分,引入相对密度来反映位孔洞结构对变形行为的影响,建立一个基于变形机理的循环本构模型;基于周期性边界条件,对泡沫铝压缩行为进行有限元模拟,讨论了孔隙率、孔的形状、孔的分布对泡沫铝力学性能的影响。还对泡沫铝夹芯板的三点弯行为进行了有限元模拟,对泡沫铝拉压弹性模量差异对夹芯板变形行为的影响和粘合夹芯板在三点弯加载下的脱粘破坏行为进行了模拟和讨论。研究成果将完善泡沫金属材料的力学性能研究,对于促进泡沫金属结构件的设计和应用具有重要意义。
通过系统的细宏观实验研究,了解泡沫铝材料及其夹芯板复合结构的循环变形行为特征,观察泡沫铝材料在循环变形过程中的孔洞微结构演化情况,揭示泡沫铝金属循环变形行为的规律和循环变形的细观机理;通过细观有限元分析,研究微结构参数对泡沫铝宏观力学响应的影响;基于细观机理,在唯象粘塑性本构框架下,提出新的泡沫铝循环本构关系;结合泡沫铝循环本构关系和面板材料循环本构关系,利用有限元软件对泡沫铝夹芯板的循环变形行为进行数值模拟和分析。该研究针对泡沫金属及其复合结构的力学问题这一固体力学研究的热点和难点问题,研究成果将是对泡沫金属这一细观非均匀材料本构关系的重要突破,具有重要的理论意义;同时,研究成果可用于循环加载条件下泡沫铝结构的设计以及安全性和寿命评估中,对于促进泡沫铝在轻质化结构中的工程应用,具有重要的应用价值。
Ansys中如何定义泡沫铝材料ANSYS在钢筋混凝土构件全过程分析中钢筋混凝土材料的单元选择、材料特性、破坏准则等方面。说明只要合理选择单元类型、划分网格等,就能够得出比较准确的非线性特性曲线,从而达...
泡沫铝是在纯铝或铝合金中加入添加剂后,经过发泡工艺而成,同时兼有金属和气泡特征。它密度小、高吸收冲击能力强、耐高温、防火性能强、抗腐蚀、隔音降噪、导热率低、电磁性高、耐候性强、有过滤能力、易加工、易安...
泡沫铝可以通过改变其密度和孔结构来设计所需的综合性能。这正是这种独特材料的魅力所在。因而被广泛地应用在许多领域:1.泡沫铝应用范围很广,利用泡沫铝的低密度、高刚度、隔音性能、隔热性能、防火性能、吸能性...
闭孔泡沫铝材料十四面体模型的改进
基于对闭孔泡沫铝发泡过程更为合理的假设,提出了描述胞体结构的改进的十四面体模型,使之可以反映密度增大时质量集中于支柱和顶点的情况。采用有限元方法及耦合边界条件,研究了闭孔泡沫铝的相对弹性模量、泊松比等弹性特征与胞体参数的关系,给出了拟合的弹性模量的计算公式,并对模型在弹性压缩变形下应力分布进行了分析。通过与已有模型的比较表明,改进模型可以较好地模拟闭孔泡沫铝材料的弹性性能。
闭孔泡沫铝材料吸声性能分析
为更全面地反映闭孔泡沫铝材料的吸声降噪能力,从密度、厚度、背后空腔深度、打孔率几个方面,对闭孔泡沫铝材料的吸声性能进行研究.改变以往单纯用吸声系数的峰值表征的方法,而是用吸声系数的峰值、降噪系数、半峰宽3个指标来评价闭孔泡沫铝材料的吸声性能.通过驻波管法测试吸声系数,用Origin软件进行吸声曲线的分析,建立一次函数.结果表明:在以往研究中个别吸声系数的峰值较高的样品,整体吸声效果不佳;而一些吸声系数的峰值处于中等水平的却具有较好的整体吸声效果,因此更适合于在实际应用中用于吸声结构的设计.
批准号 |
51571013 |
项目名称 |
5xxx系铝合金的快速时效析出强化及锯齿变形行为研究 |
项目类别 |
面上项目 |
申请代码 |
E0104 |
项目负责人 |
张迪 |
负责人职称 |
副研究员 |
依托单位 |
北京科技大学 |
研究期限 |
2016-01-01 至 2019-12-31 |
支持经费 |
62(万元) |
岩体变形与岩石性质、岩体结构、地应力及温度、湿度等的关系称为本构关系,可以写作下列表达式:
岩体变形=F(岩石、 岩体结构、压力、温度、时间)这种本构关系的数学表达式称为本构方程。这个方程式的前两项为岩体的实体,第三、四项为岩体赋存环境,最后一项表征变形过程。本构方程可用于岩体变形、岩体应力及岩体稳定性分析。
如下图所示,高边墙地下洞室变形由材料变形um及板裂化结构体单元的结构变形un组成。
其中材料变形由结构体材料变形及结构面回弹变形组成,而板裂结构变形则由板裂结构体在材料回弹变形压力作用下产生的轴向缩短强迫下产生的横向弯曲变形组成。要对此地下工程变形做出实际分析,必须先给出各变形机制单元的本构规律,这是岩体力学分析中变形分析的首要工作。
镁合金板材在加卸载复杂变形路径下表现出特殊的非对称硬化特性,建立反映其非对称硬化特征的本构模型对于精确模拟镁板冲压成形与回弹至关重要。本项目以AZ31板材为研究对象,基于细观塑性力学理论,采用理论推导、数值模拟与变形实验相结合的方法,研究镁板在加卸载变形路径下滑移-反向滑移、孪生-反孪生等微观变形机制及相互作用,建立能够描述镁板非对称硬化行为微观本质的晶体塑性本构模型;研究多晶体均匀化与宏微观耦合计算方法,将镁板非对称硬化晶体塑性模型引入大变形弹塑性有限元框架,准确模拟镁板加载-卸载-反向加载变形过程,应用于镁板成形与回弹的计算,并通过实验进行验证;利用所建立的模型,研究板材不同织构特性对成形回弹过程中加卸载变形行为的影响规律。本项目研究对于揭示镁合金板材的变形机制、发展镁合金塑性变形理论具有重要的理论价值;对于准确预测镁板回弹、发展镁板塑性成形工艺具有良好的社会意义和经济前景。