选择特殊符号
选择搜索类型
请输入搜索
前言
第1章 基本概念与初等奇点邻域的线性化问题
第2章 焦点量、奇点量与广义奇点量
第3章 周期常数与等时中心
第4章 由高阶细焦点和中心点产生的极限环分支
第5章 一类无穷远点的中心焦点理论与极限环分支
第6章 一类高次奇点的中心焦点理论与极限环分支
第7章 拟解析系统的焦点量、周期常数与极限环分支
第8章 幂零奇点的中心焦点判定与极限环分支
第9章 Zq等变系统的极限环分支和Hilbert数H(n)的增长率
第10章 三次Z2等变系统的焦点量和极限环分支
参考文献
该书介绍平面动力系统定性理论有意义的研究进展。内容包括中心和等时中心问题、多重Hopf分支、平面等变向量场的局部和全局分支。这和Hilbert的第16个问题直接相关。《平面向量场的若干经典问题》可作为高等院校数学专业研究生的教材或教师的教学参考书,也可供相关专业的科研人员和工程技术人员参考。
第2版前言第1版前言第1章 土方工程1.1 土的分类与工程性质1.2 场地平整、土方量计算与土方调配1.3 基坑土方开挖准备与降排水1.4 基坑边坡与坑壁支护1.5 土方工程的机械化施工复习思考题第2...
第一篇 个人礼仪1 讲究礼貌 语言文明2 规范姿势 举止优雅3 服饰得体 注重形象第二篇 家庭礼仪1 家庭和睦 尊重长辈2 情同手足 有爱同辈第三篇 校园礼仪1 尊重师长 虚心学习2 团结同学 共同进...
前言第一章 现代设计和现代设计教育现代设计的发展现代设计教育第二章 现代设计的萌芽与“工艺美术”运动工业革命初期的设计发展状况英国“工艺美术”运动第三章 “新艺术”运动“新艺术”运动的背景法国的“新艺...
电厂图书目录
柜号 序号 G1 1 G1 2 G1 3 G2 4 G2 5 G2 6 G2 7 G2 8 G2 9 G1 10 G2 11 G2 12 G2 13 G2 14 G1 15 G1 16 G1 17 G2 18 G2 19 G2 20 G1 21 G3 22 G3 23 G3 24 G3 25 G3 26 G3 27 G1 28 G1 29 G3 30 G3 31 G2 32 G2 33 G2 34 G2 35 G2 36 G2 37 G2 38 下右 39 下右 40 下右 41 下右 42 下右 43 下右 44 下右 45 下右 46 下右 47 下右 48 下右 49 下右 50 下右 51 下右 52 下右 53 下左 54 下左 55 下左 56 下左 57 下左 58 下左 59 下左 60 下左 61 下左 62 下左 63 下左 64 下左 65 下左 66 下左 67 下
工程常用图书目录
1 工程常用图书目录(电气、给排水、暖通、结构、建筑) 序号 图书编号 图书名称 价格(元) 备注 JTJ-工程 -24 2009JSCS-5 全国民用建筑工程设计技术措施-电气 128 JTJ-工程 -25 2009JSCS-3 全国民用建筑工程设计技术措施-给水排水 136 JTJ-工程 -26 2009JSCS-4 全国民用建筑工程设计技术措施-暖通空调 ?动力 98 JTJ-工程 -27 2009JSCS-2 全国民用建筑工程设计技术措施-结构(结构体系) 48 JTJ-工程 -28 2007JSCS-KR 全国民用建筑工程设计技术措施 节能专篇-暖通空调 ?动力 54 JTJ-工程 -29 11G101-1 混凝土结构施工图平面整体表示方法制图规则和构造详图(现浇混凝土框架、剪力墙、框架 -剪力墙、框 支剪力墙结构、现浇混凝土楼面与屋面板) 69 代替 00G101
《平面动力系统的若干经典问题(英文版)》介绍两类奇行波方程的研究的动力系统方法,及对大量数学物理问题的应用。
浅水波,非线性光学、电磁学、等离子物理、凝聚态物理、生物及化学、通讯等领域均存在非线性波运动。对其数学模型——波方程的解研究有重要价值。上世纪90年代,数学家发现了行波方程的非光滑的孤粒子解(peakon)、有限支集解(compacton)和圈解(loopsolution)等,为理解这些解,特别是非光滑解的出现,导致用动力系统的分支理论及方法对奇行波方程进行研究的新方向。本书介绍两类奇行波方程的研究的动力系统方法,及对大量数学物理问题的应用。
Preface
1 Basic Concept and Linearized Problem of Systems
1.1 Basic Concept and Variable Transformation
1.2 Resultant of the Weierstrass Polynomial and Multiplicity of a Singular Point
1.3 Quasi—Algebraic Integrals of Polynomial Systems
1.4 Cauchy Majorant and Analytic Properties in a Neighborhood of an Ordinary Point
1.5 Classification of Elementary Singular Points and Linearized Problem
1.6 Node Value and Linearized Problem of the Integer—Ratio Node
1.7 Linearized Problem of the Degenerate Node
1.8 Integrability and Linearized Problem of Weak Critical Singular Point
1.9 Integrability and Linearized Problem of the Resonant Singular Point
2 Focal Values, Saddle Values and Singular Point Values
2.1 Successor Functions and Properties of Focal Values
2.2 Poincare Formal Series and Algebraic Equivalence
2.3 Linear Recursive Formulas for the Computation of Singular Point Values
2.4 The Algebraic Construction of Singular Values
2.5 Elementary Generalized Rotation Invariants of the Cubic Systems
2.6 Singular Point Values and Integrability Condition of the Quadratic Systems
2.7 Singular Point Values and Integrability Condition of the Cubic Systems Having Homogeneous Nonlinearities
3 Multiple Hopf Bifurcations
3.1 The Zeros of Successor Functions in the Polar Coordinates
3.2 Analytic Equivalence
3.3 Quasi Successor Function
3.4 Bifurcations of Limit Circle of a Class of Quadratic Systems
4 Isochronous Center In Complex Domain
4.1 Isochronous Centers and Period Constants
4.2 Linear Recursive Formulas to Compute Period Constants
4.3 Isochronous Center for a Class of Quintic System in the Complex Domain
4.3.1 The Conditions of Isochronous Center Under Condition C1
4.3.2 The Conditions of Isochronous Center Under Condition C2
4.3.3 The Conditions oflsochronous Center Under Condition C3
4.3.4 Non—Isochronous Center under Condition C4 and C1
4.4 The Method of Time—Angle Difference
4.5 The Conditions of Isochronous Center of the Origin for a Cubic System
5 Theory of Center—Focus and Bifurcation of Limit Cycles at Infinity of a Class of Systems
5.1 Definition of the Focal Values of Infinity
5.2 Conversion of Questions
5.3 Method of Formal Series and Singular Point Value of Infinity
5.4 The Algebraic Construction of Singular Point Values of Infinity
5.5 Singular Point Values at Infinity and Integrable Conditions for a Class of Cubic System
5.6 Bifurcation of Limit Cycles at Infinity
5.7 Isochronous Centers at Infinity of a Polynomial Systems
5.7.1 Conditions of Complex Center for System (5.7.6)
5.7.2 Conditions of Complex Isochronous Center for System (5.7.6)
6 Theory of Center—Focus and Bifurcations of Limit Cycles for a Class of Multiple Singular Points
6.1 Succession Function and Focal Values for a Class of Multiple Singular Points
6.2 Conversion of the Questions
6.3 Formal Series, Integral Factors and Singular Point Values for a Class of Multiple Singular Points
6.4 The Algebraic Structure of Singular Point Values of a Class of Multiple Singular Points
6.5 Bifurcation of Limit Cycles From a Class of Multiple Singular Points
6.6 Bifurcation of Limit Cycles Created from a Multiple Singular Point for a Class of Quartic System
6.7 Quasi Isochronous Center of Multiple Singular Point for a Class of Analytic System
7 On Quasi Analytic Systems
7.2 Reduction of the Problems
7.3 Focal Values, Periodic Constants and First Integrals of (7.2.3)
7.4 Singular Point Values and Bifurcations of Limit Cycles of Quasi—Quadratic Systems
7.5 Integrability of Quasi—Quadratic Systems
7.6 Isochronous Center of Quasi—Quadratic Systems
7.6.1 The Problem of Complex Isochronous Centers Under the Condition of C1
7.6.2 The Problem of Complex Isochronous Centers Under the Condition of C2
7.6.3 The Problem of Complex Isochronous Centers Under the Other Conditions
7.7 Singular Point Values and Center Conditions for a Class of Quasi—Cubic Systems
8 Local and Non—Local Bifurcations of Perturbed Zq—Equivariant Hamiltonian Vector Fields
8.1 Zq—Equivariant Planar Vector Fields and an Example
8.2 The Method of Detection Functions: Rough Perturbations of Zq— Equivariant Hamiltonian Vector Fields
8.3 Bifurcations of Limit Cycles of a 22— Equivariant Perturbed Hamiltonian Vector Fields
8.3.1 Hopf Bifurcation Parameter Values
8.3.2 Bifurcations From Heteroclinic or Homoclinic Loops
8.3.3 The Values of Bifurcation Directions of Heteroclinic and Homoclinic Loops
8.3.4 Analysis and Conclusions
8.4 The Rate of Growth of Hilbert Number H (n,) with n
8.4.1 Preliminary Lemmas
8.4.2 A Correction to the Lower Bounds of H (2k—1) Given in (Christopher and Lloyd, 1995)
8.4.3 A New Lower Bound for H (2k—1)
8.4.4 Lower Bound for H(3×2k—1—1)
9 Center—Focus Problem and Bifurcations of Limit Cycles for a Z2—Equivariant Cubic System
9.1 Standard Form of a Class of System (E3Z2)
9.2 Liapunov Constants, Invariant Integrals and the Necessary and Sufficient Conditions of the Existence for the Bi—Center
9.3 The Conditions of Six—Order Weak Focus and Bifurcations of Limit Cycles
9.4 A Class of (E3Z2) System With 13 Limit Cycles
9.5 Proofs of Lemma 9.4.1 and Theorem 9.4.1
9.6 The Proofs of Lemma 9.4.2 and Lemma 9.4.3
10 Center—Focus Problem and Bifurcations of Limit Cycles for Three—Multiple Nilpotent Singular Points
10.1 Criteria of Center—Focus for a Nilpotent Singular Point
10.2 Successor Functions and Focus Value of Three—Multiple Nilpotent Singular Point
10.3 Bifurcation of Limit Cycles Created from Three—Multiple Nilpotent Singular Point
10.4 The Classification of Three—Multiple Nilpotent Singular Points and Inverse Integral Factor
10.5 Quasi—Lyapunov Constants For the Three—Multiple Nilpotent Singular Point
10.6 Proof of Theorem 10.5.2
10.7 On the Computation of Quasi—Lyapunov Constants
10.8 Bifurcations of Limit Cycles Created from a Three—Multiple Nilpotent Singular Point of a Cubic System
Bibliography
Index