选择特殊符号
选择搜索类型
请输入搜索
包括压力室和内置一体化轴向驱动器,
外置荷重传感器,
位移测量,
用于各规格试样排水、不排水的底座和顶盖,
电控设备,
电源驱动。
1)全自动三轴自动试验系统是用来完成GBT50123-1999以及国际标准试验。
2)该系统由运行Windows的计算机控制。一台计算机可以控制多套三轴系统。操作者从菜单(例如U-U,C-U,C-D,多级)中选择试验类型,然后输入围压,反压,试验速率和试验终止条件等试验参数,系统自动处理储存在文件中的所有数据。
3)在窗口中实时显示3个图形和1个数据窗。
最大围压1700kPa,最大轴向力10kN,应变控制速率从每分钟0.0001mm至每分钟4.8mm,无级调速,内置16键和液晶显示。
基本上由以下几部分:1、库体2、制冷机组(压缩机、冷凝器、冷凝风机或者冷却塔等)3、蒸发器4、电控制箱5、膨胀阀6、铜管7、制冷剂,库灯等电器件蓝梦制冷 为您解答您想知道的冷库问题
如果是水库大坝主要由主坝、副坝、重力坝、正常溢洪道、非常溢洪道、新增非常溢洪道、灵正渠涵管及电站组成。
标准饱和与固结模块:
B值检测;围压和反压饱和蠕变;各向同性固结试验
标准三轴测试模块:
U-U试验(可测孔压);C-U试验(可测孔压);C-D试验(可测孔压)。
地毯材质及组成部分
地毯材质及组成部分 地毯城 / 2009-12-16 地毯的材料 制造地毯的材料可分为毯面材料、 初级背衬、 防松涂层、 次级背衬及粘合剂。 不同的地毯所 用材料也不同。 1、毯面纤维 用来生产地毯的毯面纤维如前所述,有尼龙、腈纶、丙纶、涤纶等等。其中尼龙适宜匹染, 有优良的抗磨性及良好的回弹性与织纹保持性, 加工成本代, 因而使用量最大。 丙纶价格低, 染色性差,用来制造长绒、紧拈细绒不行,只适用于毛圈结构,如针扎地毯。因此出现了混 纺的毯面纤维,如尼龙与丙纶混纺的毯面纤维。 为了提高地毯的耐污染性和抗静电性, 国外已使用异形空心纤维, 或加入各种添加剂, 如酯 类、酰胺或胺类的多醚衍生物,甚至可混入很细的金属纤维来提高抗静电性。 由于聚丙烯纤维价格低, 抗拉强度、 湿强度、 耐磨性都优良, 所以只要回弹性小和染色性差 的缺陷能加以改进,它作为毯面纤维的潜力很大。 2、初级背衬 初级背衬
自动气象观测设备组成部分介绍
1 自动气象观测设备组成部分介绍 对于自动气象观测设备很多人都陌生, 自动气象观测设备本身主要的作用是 用于监测环境中的各种气象要素信息, 通过对于环境中气象要素信息的监测, 为 农业种植提供可以参考的数据支撑, 那么自动气象观测设备具体是如何实现监测 的呢?自动气象观测设备组成部分都有哪些呢? 传感器部分: 传感器部分包括各种气象要素传感器, 比如风速传感器、 风向 传感器、雨量、温度、湿度、等各种气象要素传感器,这些气象要素并不是固定 的,而是可以根据用户的实际需求选择的。 采集器和传输模块部分: 采集器和传输模块主要的作用是用于气象要素数据 的采集和传输,采集器主要的作用是将气象要素进行收集, 收集后通过无线的传 输方式经数据传送至后台电脑端。 气象站支架部分:自动气象观测设备支架部分主要的作用是用于放置各种气 象要素传感器,以及太阳能电板、采集器和传输模块等。 太阳能电板和蓄电池
传统的振动三轴仪一般包括压力室、激振设备和量测设备三个系统。
振动三轴仪的压力室与静三轴仪的压力室基本相同,结构材料、密封形式也大体一样。
在量测设备方面,振动三轴仪要比静三轴仪复杂一些。振动三轴仪的量测记录,一般采用电测设备,即将动力作用下的动孔隙水压力、动变形和动应力的变化,通过传感器转换成电量或电参数的变化,再经过放大,推动光电示波器的振子偏转,引起光点移动,并在紫外线感光纸带上分别记录下来。
振动三轴仪的激振设备,根据产生激振力方式的不同,可以分为电-磁激振式、惯性力振动式和电-气激振式等类型。每种类型又分为单向激振和双向激振两种。
随着土工试验技术不断进步,像英国GDS等专业土工试验仪器研究者逐渐研发出了新型动三轴仪,仪器的动力方式、工作原理等都发生了革命性变化,新型动三轴仪解决了传统三轴仪存在的很多问题,仪器参数性能提高,能完成更高性能的动三轴试验。
真三轴仪可以实现3个轴向分别施加不同大小的主应力,3轴向产生应变,能够模拟土体中一般的应力条件。为了实现3个轴向施加主应力,真三轴试样一般为一个立方体。若真三轴仪的3个轴向均采用平板加载时,每个轴向施加正应力的平板的刚性大,相对于土样,三向加载板可视为刚性板。当试样发生较大变形后,与试样接触的刚性板必然产生相互接触而制约它们的运动,这就影响了3个轴向的加载和变形。三向柔性加载时,便于控制应力,但三向柔性液压囊在接触处存在相互干扰,且不利于独立测试三向应变。双向平板、一向柔性加载时,双向刚性平板之间也存在互相干扰,且它们只能施加大小主应力。因此,改善真三轴试验加载机构,消除现有真三轴仪加载刚性板之间的相互制约,刚性板对试样变形的约束影响,以及柔性液压囊之间的相互干扰使得试样沿三个轴向自由变形,不仅可以克服现有真三轴仪存在的问题,而且使模拟的应力与变形条件更加符合实际。
完善的真三轴仪加载机构能够模拟一般应力条件,3个轴向独立量测变形,以便研究复杂应力条件下岩土材料的力学性状。为此,对该真三轴仪的研制提出如下技术要求:
①能够分别控制应力与应变,在轴向加载过程中可以实现控制加荷速率和变形速率,剪切过程可以实现中主应力联动控制,实现等洛德参数应力路径;
②三向独立加荷,可以分别独立自动控制施加轴向、侧向荷载,既避免两者之间的相互影响,又可以相互协调,使立方体试样上沿轴向和侧向分别承受不同大小的正应力,能够模拟主应力轴偏转和旋转应力路径等土体的真实应力状态,并能进行多种应力路径的真三轴试验;
③能够控制排水条件,可以分别进行固结排水和固结不排水条件试验,同时可以量测孔隙水压力;
④自动量测与控制,实现所有应力信号输入与反馈控制的自动化,以及测试、量测信号的A/D转换和数据的自动采集处理。
同时,真三轴仪还具备以下6个特点:
①水平面内两个主应力方向上应力和变形均呈对称分布;
②土样侧面不受切向约束作用;
③能够适应加载过程立方体土样变形引起侧棱变位的变化;
④能够适应土样侧棱挤出变形的发展;
⑤避免三向主应力加载过程的互相干扰;
⑥加载过程土样保持对称,在水平面上始终中心受荷。
对比以往真三轴仪的优缺点,新研制的真三轴仪是一种轴向刚性、侧向柔性的复合型加载真三轴仪,主要由主机、伺服步进电机液压加载系统和计算机自动控制系统3部分构成。
主机的压力室呈立方体,试样位于刚性底座和顶盖中央,立方体试样的侧面对应的有两组梯形侧压腔,放置柔性液压囊,且与液压/体变控制器连接。在竖向的主轴方向用刚性板施加大主应力σ1;在水平面内的侧向分别有两对柔性囊相向施加中主应力σ2和小主应力σ3。为了主动适应加载过程中试样变形引起棱角的变化和避免中、小主应力之间的相互干扰,压力室的各侧压腔之间设置能够径向弹性伸缩、水平面内弹性转动的隔离板,能够有效分离相邻液压囊。步进伺服电机液压加载系统能够控制三向独立加载,其具有伺服步进电机驱动滚珠丝杆推进液压缸活塞产生液压源,分别与压力室底座下轴向活塞和侧向液压柔性囊连接,通过液压传感器和位移传感器,既能够实现三向独立加载,也能够控制三向加载时柔性囊的体变。同时,还实现了自动控制与数据采集。这是本次仪器开发的核心技术。新型真三轴仪系统及工作原理见图1所示。
压力室
压力室由底座、顶盖板、外筒组成。它们都由不锈钢金属材料制成。压力室外筒的形状呈立方体,其中四棱为圆弧形。具体形状见图2,3。压力室横截面直边长200mm,壁厚8mm,高度为150mm,外棱边的倒角弧度为15°。侧压腔的隔板与压力室侧壁连为一体,每个隔板由转动轴承、径向伸缩板组成,径向伸缩弹簧衔嵌在转动轴承内,水平面扭转限制弹簧安装于压力室外侧壁。
试样尺寸为70mm×70mm×70mm,内置于正方形断面的特制的橡胶膜内,两端通过橡皮膜外包薄壁环,且绕过薄壁环内嵌,再嵌入带有密封圈的正方形底或顶座,密封试样上下两端。试样的底座和顶盖均内嵌透水板,便于控制排水条件。橡皮膜密封的试样安置在四个侧压力腔和一个刚性底座及一个刚性帽之间。压力室的工作原理是试样的侧向中主应力σ2和小主应力σ3分别由两套伺服步进电机驱动的液压/体变控制器连接的液压柔性囊施加。试样的大主应力由压力室底座下的轴向加荷油缸顶升压力室,通过试样帽由反力主轴施加。当轴向加载时,试样产生轴向压缩变形,侧向可能产生挤出变形,随着侧胀的发生,侧压力腔隔板可产生弹性收缩,适应试样侧棱的位移。
如试样也产生侧向压缩变形,则侧压腔的隔板可产生弹性伸出。当中主应力比小主应力较大作用试样时,试样在水平面上沿小主应力作用方向产生伸展变形,沿中主应力方向产生压缩变形,引起试样侧棱产生转角变位,同样,隔板也可产生水平面转动,从而能够适应试样侧棱的变位。试样的排水条件可由与底座、顶盖透水板连通的排水管阀门控制。压力室实物及其内部结构见图4,5。
加荷系统
固结压力均由伺服步进电机驱动的液压/体变控制器直接供给。两个侧向固结应力分别由两套与侧压腔内柔性囊连接的液压/体变控制器独立控制,大主应方向由与压力室底座下的油缸连接的一套液压/体变控制器独立控制。如图6所示,共有3套伺服步进电机驱动的液压/体变控制器。在试样固结时能实现3个固结应力的单独施加,压缩剪切时3个主应力也互不干扰和影响。两套侧向主应力的液压/体变控制器均在液压缸和移动活塞上装有液压传感器和位移传感器,分别用于控制侧向主应力的大小及液压囊的体变;轴向荷载和试样变形分别由反力主轴上的荷载传感器和压力室顶盖上的位移传感器测量(图7),并反馈于轴向加载的液压/体变控制器。对试样施加轴向荷载,可以分为应变控制式和应力控制式两种。应变控制是指试样按规定的变形速率产生轴向变形,测定产生某一轴向变形所需要的轴向力。应力控制式是指分级加载,测量每级荷载作用下试样的变形量。它们可以分别由轴向荷载传感器和位移传感器量测,并通过自动控系统反馈于伺服步进电机液压/体变控制器控制应力和位移。
量测系统
量测系统包括应力量测、变形量测和孔隙水压力量测。大主应力方向为刚性板加压,因此应力和变形传感器可直接安装在压力室盖板上。侧向应力和变形可通过伺服步进电机加载系统上安装的压力传感器和位移传感器量测。孔隙水压力在排水通道处安装孔压传感器量测。
排水系统
土样在固结和试验时采用的是上下双面排水,在与土样直接接触的顶板和底座上设置有透水板,通过透水板可以进行排水。在做固结排水试验时,可以通过量水管量测试样在试验时的排水量;进行固结不排水试验时,可将排水管连接到孔压传感器上,以测得试样的孔隙水压力。
自动控制系统
真三轴仪的控制系统由应力应变传感器、电阻应变仪、控制调节电路及微机控制系统几部分组成,见图8。土体试样的应力应变,由对应的传感器做相应的输出,输出作为反馈的信号与给定的信号闭环负反馈调节,应力控制与应变控制由切换开关转换,相应的传感器输出信号经放大后输入A/D卡中,由微机完成试验数据的高速采集,以数据文件方式存放于微机中。
附属设备
相关的附属设备包括原状样削样器、重塑样压样器、试样饱和器、橡皮膜、液压橡胶囊等。 2100433B
动三轴仪有以下分类:
电机控制动三轴
电机控制的动三轴试验系统是研究型动三轴测试系统。该系统将三轴压力室和动力驱动器合为一体,从压力室底座施加轴向力和轴向变形。压力室由装有马达驱动的基座螺旋传动。当没有选择径向动力驱动器时,通过平衡锤消除动态试验对恒定围压的影响。系统由动三轴软件来控制。任一循环的数据都可以实时记录和显示出来。
技术参数:
(1) 位移量程=100mm
(2) 位移精度=35μm/50mm(即:0.07%)
(3) 位移分辨率=0.208μm
(4) 轴向力精度=<荷重传感器量程的0.1% (即:对于10kN的荷重传感器来说,其精度为1N)
(5) 轴向力分辨率=16 bit(即:对于10KN 荷重传感器来说<0.4N,对于40KN 荷重传感器来说<1.5N)
(6) 每个周期可以控制的数据点数=10,000@1Hz,2000@5Hz
(7)最大可以存储的数据点数=1000点/周期
双向振动三轴仪
(1)可进行强震、动强度、动态模量及阻尼比等土体动态指标测试
(2)采用动态伺服电机从压力室下方加载
(3)兼容所有静三轴测试系统的测试功能
(4)最高级别的动三轴测试设备
(5)在10Hz范围内独立循环程控轴向和径向加载。可以施加正弦波、方波、三角波
基本型动三轴仪
除了动态三轴试验外,动三轴系统也可以进行传统的三轴试验,例如不排水不固结试验(UU),固结不排水试验(CU),固结排水试验(CD)以及更高级的试验例如应力路径、K0固结和弹性模量试验等。
技术规范:
(1)最大测试频率:5Hz
(2)最小测试频率:静态,比如小于0.001Hz
(3)高精度的动态电机伺服作动器。
(4)可以使用标准三轴压力室(升级到动态的密封元件和轴承)。
(5)可选的试样尺寸(取决于选择的压力室):
- Φ38×76mm (或者Φ39.1×80mm)
- Φ50×100mm
- Φ70×140mm (或者Φ61.8×123.6mm)
- Φ100×200mm (或者Φ101×202mm)
- Φ150×300mm
(6)16-比特的动态数据采集
(7)16-比特的动态驱动控制通道
(8)围压可达到2MPa (取决于压力室的选择)
(9)很小的室内占地空间
(10)不需要液源装置