选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 电气百科

双定子锥形永磁同步轮毂电机理论及实用技术研究

《双定子锥形永磁同步轮毂电机理论及实用技术研究》是依托哈尔滨工业大学,由柴凤担任项目负责人的面上项目。

双定子锥形永磁同步轮毂电机理论及实用技术研究基本信息

双定子锥形永磁同步轮毂电机理论及实用技术研究结题摘要

在综合分析国内外电驱动用永磁轮毂电机的基础上,本课题从提高永磁电机低速转矩特性和高速弱磁能力的角度出发,提出了新型双定子锥形永磁轮毂电机的研究方案。综合考虑永磁电机低速大转矩和宽恒功率区这一设计难点,充分利用轮毂电机较大的内部空间,外定子和转子外圆采用常规的圆柱形结构,主要输出电磁转矩;转子内圆和内定子采用锥形结构,主要输出轴向力,辅助输出电磁转矩。在低速大转矩区,内外两个电机共同作用,能够有效的提高电机的转矩输出能力和功率密度,本课题设计的双定子电机较相同体积的单定子电机转矩增大20%左右;在恒功率区,利用锥形电机轴向磁拉力和轴向平衡装置的相互作用,使电机转子产生轴向位移,增加气隙长度,减小定转子间的有效耦合面积,减小气隙磁通量,达到弱磁扩速的目的。 本课题对不同的定子组合形式、不同的转子结构形式,不同的通电状态、不同的转子轴向位移,以及锥角变化等参数对电机的转速转矩特性和弱磁扩速能力的影响进行了深入研究,开发了锥形电机电磁设计路算程序,建立了三维有限元仿真模型和分段式的二维简化模型,制造了单定子永磁锥形和双定子永磁锥形电机两台样机。理论分析、仿真计算和实验研究中发现,分段数大于等于3时,二维简化模型基本可以满足工程设计的精度要求。根据作用机理和变化规律不同,锥形电机的轴向磁拉力可以分解为锥角力和正位力,通过改变锥角的大小来调整二者的比例分配。直轴电流可以近似线性的影响轴向磁拉力的大小,而交轴电流对轴向磁拉力几乎没有影响;不论锥角的大小,锥形电机的转子轴向位移为零时,具有与同等体积圆柱形电机相同的转矩输出能力,完全胜任低速大转矩的要求。锥形电机不需要直轴去磁电流进行弱磁控制,仅依靠转子的轴向位移即可实现恒功率运行,且锥角或轴向位移越大,恒功率范围越宽,最高转速越高。但过大的锥角和轴向位移会增加电机径向和轴向的尺寸,降低整机的功率密度。 本课题是电气工程学科和能源、交通领域的前沿课题,为电驱动用宽速域大转矩轮毂电机的研究提供了新思路,研究成果必将对学科的发展起到积极的促进和推动作用。

查看详情

双定子锥形永磁同步轮毂电机理论及实用技术研究造价信息

  • 市场价
  • 信息价
  • 询价

同步电机

  • TL2000-20/2600 功率2000KV 压6000伏 20级 开启式 大型立式
  • 阳光
  • 13%
  • 湖北阳光电气有限公司
  • 2022-12-07
查看价格

同步电机

  • TL800-24/2150 功率800KV 压6000伏 24级 开启式 大型立式
  • 阳光
  • 13%
  • 湖北阳光电气有限公司
  • 2022-12-07
查看价格

同步电机

  • TL2300-32/3250 功率2300KV 压6000伏 32级 开启式 大型立式
  • 阳光
  • 13%
  • 湖北阳光电气有限公司
  • 2022-12-07
查看价格

同步电机

  • 功率3000KV 压6000伏 40级 开启式 大型立式
  • 华博
  • 13%
  • 湖北华博阳光电机有限公司
  • 2022-12-07
查看价格

同步电机

  • 功率1600KV 压6000伏 40级 开启式 大型立式
  • 华博
  • 13%
  • 湖北华博阳光电机有限公司
  • 2022-12-07
查看价格

法国索菲SOMFY同轴电机

  • 珠海市2003年10月信息价
  • 建筑工程
查看价格

法国索菲SOMFY同轴电机

  • 珠海市2003年9月信息价
  • 建筑工程
查看价格

圈闸动机带摇控装置

  • 如带储池再些单价上加500元
  • 清远市连山县2019年上半年信息价
  • 建筑工程
查看价格

圈闸动机带摇控装置

  • 如带储池再些单价上加500元
  • 清远市连山县2021年下半年信息价
  • 建筑工程
查看价格

圈闸动机带摇控装置

  • 如带储池再些单价上加500元
  • 清远市连山县2018年上半年信息价
  • 建筑工程
查看价格

永磁同步电机

  • TYCE永磁电机11×3KW
  • 1台
  • 1
  • 京电毕捷
  • 中高档
  • 含税费 | 含运费
  • 2022-01-20
查看价格

永磁同步电机

  • TYCE永磁电机11×3KW
  • 1台
  • 1
  • 京电毕捷
  • 中高档
  • 含税费 | 含运费
  • 2022-01-20
查看价格

同步电机

  • TL1600-28/2600 功率1600KV 压6000伏 28级 开启式 大型立式
  • 8507台
  • 2
  • 中档
  • 含税费 | 不含运费
  • 2015-10-20
查看价格

同步电机

  • TL1600-40/3250 功率1600KV 压6000伏 40级 开启式 大型立式
  • 3838台
  • 2
  • 中档
  • 不含税费 | 不含运费
  • 2015-04-15
查看价格

同步电机

  • TL800-24/2150 功率800KV 压6000伏 24级 开启式 大型立式
  • 5259台
  • 2
  • 中档
  • 含税费 | 含运费
  • 2015-11-09
查看价格

双定子锥形永磁同步轮毂电机理论及实用技术研究项目摘要

在综合分析国内外电驱动用永磁轮毂电机的基础上,本项目从提高永磁电机低速转矩性能和高速弱磁能力角度出发,提出新型双定子锥形永磁轮毂电机的研究课题。该课题综合考量永磁电机的低速大扭矩和宽恒功率区这一设计难点,充分利用轮毂电机较大的内部空间,将双定子设计思想和锥形转子方案有机结合,在低速大扭矩区,内外两个定子同时作用,有效提高电机转矩;在恒功率区,利用定子电流对锥形转子轴向磁拉力的作用,控制定子电流的直轴分量,使得电机转子产生轴向位移,增加气隙长度且减小定转子共同作用空间,从而达到减少气隙磁通的目的。本课题对不同定子组合形式、不同转子结构形式、不同通电状态、不同轴向位移及不同锥度角变化等对电机转矩转速特性的影响开展理论分析、数值计算和实验研究。该项研究工作是电气工程学科以及能源和交通领域的前沿课题,为电传动用宽速域大扭矩轮毂电机研究提供新思路,研究成果对学科的发展起到积极的促进和推动作用。

查看详情

双定子锥形永磁同步轮毂电机理论及实用技术研究常见问题

查看详情

双定子锥形永磁同步轮毂电机理论及实用技术研究文献

双定子轴向磁场永磁同步风力发电机的设计 双定子轴向磁场永磁同步风力发电机的设计

双定子轴向磁场永磁同步风力发电机的设计

格式:pdf

大小:1.8MB

页数: 6页

研究表明:如果电机的极数足够多,轴向长度与外径的比率足够小的话,轴向磁场电机比传统径向磁场电机的转矩和功率密度大.轴向磁场电机的缺点是电枢铁心制造比较困难.为此本文提出一种新的结构方案,用软磁复合材料形成定子的齿部,再与带冲叠片形成的铁心轭部结合起来形成定子铁心,并且使用集中绕组.然后对这种新型轴向磁场电机进行了电磁设计,并用Ansoft有限元法对电机的磁场进行了仿真.结果表明:通过合理地选择主要尺寸和极数/槽数比,可以获得正弦波的电动势波形和较小的齿槽转矩.

永磁电机永磁同步电机 永磁电机永磁同步电机

永磁电机永磁同步电机

格式:pdf

大小:1.8MB

页数: 64页

永磁电机永磁同步电机

永磁同步电机策略综述

1 引言

近年来,随着电力电子技术、微电子技术、新型电机控制理论和稀土永磁材料的快速发展,永磁同步电动机得以迅速的推广应用。永磁同步电动机具有体积小,损耗低,效率高等优点,在节约能源和环境保护日益受到重视的今天,对其研究就显得非常必要。因此。这里对永磁同步电机的控制策略进行综述,并介绍了永磁同步电动机控制系统的各种控制策略发展方向。

2 永磁同步电动机的数学模型

当永磁同步电动机的定子通入三相交流电时,三相电流在定子绕组的电阻上产生电压降。由三相交流电产生的旋转电枢磁动势及建立的电枢磁场,一方面切割定子绕组,并在定子绕组中产生感应电动势;另一方面以电磁力拖动转子以同步转速旋转。电枢电流还会产生仅与定子绕组相交链的定子绕组漏磁通,并在定子绕组中产生感应漏电动势。此外,转子永磁体产生的磁场也以同步转速切割定子绕组。从而产生空载电动势。为了便于分析,在建立数学模型时,假设以下参数:①忽略电动机的铁心饱和;②不计电机中的涡流和磁滞损耗;③定子和转子磁动势所产生的磁场沿定子内圆按正弦分布,即忽略磁场中所有的空间谐波;④各相绕组对称,即各相绕组的匝数与电阻相同,各相轴线相互位移同样的电角度。

在分析同步电动机的数学模型时,常采用两相同步旋转(d,q)坐标系和两相静止(α,β)坐标系。图1给出永磁同步电动机在(d,q)旋转坐标系下的数学模型。

(1)定子电压方程为:

式中:r为定子绕组电阻;p为微分算子,p=d/dt;id,iq为定子电流;ud,uq为定子电压;ψd,ψq分别为磁链在d,q轴上的分量;ωf为转子角速度(ω=ωfnp);np为电动机极对数。

(2)定子磁链方程为:

式中:ψf为转子磁链。

(3)电磁转矩为:

式中:J为电机的转动惯量。

若电动机为隐极电动机,则Ld=Lq,选取id,iq及电动机机械角速度ω为状态变量,由此可得永磁同步电动机的状态方程式为:

由式(7)可见,三相永磁同步电动机是一个多变量系统,而且id,iq,ω之间存在非线性耦合关系,要想实现对三相永磁同步电机的高性能控制,是一个颇具挑战性的课题。

3 永磁同步电动机的控制策略

任何电动机的电磁转矩都是由主磁场和电枢磁场相互作用产生的。直流电动机的主磁场和电枢磁场在空间互差90°,因此可以独立调节;交流电机的主磁场和电枢磁场互不垂直,互相影响。因此,长期以来,交流电动机的转矩控制性能较差。经过长期研究,目前的交流电机控制有恒压频比控制、矢量控制、直接转矩控制等方案。

3.1 恒压频比控制

恒压频比控制是一种开环控制。它根据系统的给定,利用空间矢量脉宽调制转化为期望的输出电压uout进行控制,使电动机以一定的转速运转。在一些动态性能要求不高的场所,由于开环变压变频控制方式简单,至今仍普遍用于一般的调速系统中,但因其依据电动机的稳态模型,无法获得理想的动态控制性能,因此必须依据电动机的动态数学模型。永磁同步电动机的动态数学模型为非线性、多变量,它含有ω与id或iq的乘积项,因此要得到精确的动态控制性能,必须对ω和id,iq解耦。近年来,研究各种非线性控制器用于解决永磁同步电动机的非线性特性。

3.2 矢量控制

高性能的交流调速系统需要现代控制理论的支持,对于交流电动机,目前使用最广泛的当属矢量控制方案。自1971年德国西门子公司F.Blaschke提出矢量控制原理,该控制方案就倍受青睐。因此,对其进行深入研究。

矢量控制的基本思想是:在普通的三相交流电动机上模拟直流电机转矩的控制规律,磁场定向坐标通过矢量变换,将三相交流电动机的定子电流分解成励磁电流分量和转矩电流分量,并使这两个分量相互垂直,彼此独立,然后分别调节,以获得像直流电动机一样良好的动态特性。因此矢量控制的关键在于对定子电流幅值和空间位置(频率和相位)的控制。矢量控制的目的是改善转矩控制性能,最终的实施是对id,iq的控制。由于定子侧的物理量都是交流量,其空间矢量在空间以同步转速旋转,因此调节、控制和计算都不方便。需借助复杂的坐标变换进行矢量控制,而且对电动机参数的依赖性很大,难以保证完全解耦,使控制效果大打折扣。

3.3 直接转矩控制

矢量控制方案是一种有效的交流伺服电动机控制方案。但因其需要复杂的矢量旋转变换,而且电动机的机械常数低于电磁常数,所以不能迅速地响应矢量控制中的转矩。针对矢量控制的这一缺点,德国学者Depenbrock于上世纪80年代提出了一种具有快速转矩响应特性的控制方案,即直接转矩控制(DTC)。该控制方案摒弃了矢量控制中解耦的控制思想及电流反馈环节,采取定子磁链定向的方法,利用离散的两点式控制直接对电动机的定子磁链和转矩进行调节,具有结构简单,转矩响应快等优点。DTC最早用于感应电动机,1997年L Zhong等人对DTC算法进行改造,将其用于永磁同步电动机控制,目前已有相关的仿真和实验研究。

DTC方法实现磁链和转矩的双闭环控制。在得到电动机的磁链和转矩值后,即可对永磁同步电动机进行DTC。图2给出永磁同步电机的DTC方案结构框图。它由永磁同步电动机、逆变器、转矩估算、磁链估算及电压矢量切换开关表等环节组成,其中ud,uq,id,iq为静止(d,q)坐标系下电压、电流分量。

虽然,对DTC的研究已取得了很大的进展,但在理论和实践上还不够成熟,例如:低速性能、带负载能力等,而且它对实时性要求高,计算量大。

3.4 解耦控制

永磁同步电动机数学模型经坐标变换后,id,id之间仍存在耦合,不能实现对id和iq的独立调节。若想使永磁同步电动机获得良好的动、静态性能,就必须解决id,iq的解耦问题。若能控制id恒为0,则可简化永磁同步电动机的状态方程式为:

此时,id与iq无耦合关系,Te=npψfiq,独立调节iq可实现转矩的线性化。实现id恒为0的解耦控制,可采用电压型解耦和电流型解耦。前者是一种完全解耦控制方案,可用于对id,iq的完全解耦,但实现较为复杂;后者是一种近似解耦控制方案,控制原理是:适当选取id环电流调节器的参数,使其具有相当的增益,并始终使控制器的参考输入指令id*=O,可得到id≈id*=0,iq≈iq*o,这样就获得了永磁同步电动机的近似解耦。图3给出基于矢量控制和id*=O解耦控制的永磁同步电动机

调速系统框图。

虽然电流型解耦控制方案不能完全解耦,但仍是一种行之有效的控制方法,只要采取较好的处理方式,也能得到高精度的转矩控制。因此,工程上使用电流型解耦控制方案的较多。然而,电流型解耦控制只能实现电动机电流和转速的静态解耦,若实现动态耦合会影响电动机的控制精度。另外,电流型解耦控制通过使耦合项中的一项保持不变,会引入一个滞后的功率因数。

4 结语

上述永磁同步电动机的各种控制策略各有优缺点,实际应用中应当根据性能要求采用与之相适应的控制策略,以获得最佳性能。永磁同步电动机以其卓越的性能,在控制策略方面已取得了许多成果,相信永磁同步电动机必然广泛地应用于国民经济的各个领域。

查看详情

定子永磁型无刷电机定子永磁型无刷电机特点对比

定子永磁型电机主要有DSPM电机、FRPM电机和FSPM电机三类,每一类型电机在结构上又有很多变化,它们既有共性,又有个体差异性。它们的共性主要体现在:

1)转矩产生机理相同。传统的直流电机、感应电机以及同步电机,都属于双边磁场电机,即励磁磁场在一边(定子或转子),电枢磁场在另一边(转子或定子),定转子之间的相对运动使电枢绕组中的磁链发生交变,从而感应出电势,当绕组中通入电流后,电流与电势相互作用实现机电能量转换。而定子永磁型电机的励磁源和电枢绕组都位于定子,它依靠定子直流励磁源与转子凸极的调制作用,使定子绕组中的磁链发生交变,从而产生感应电势与电磁转矩,实现机电能量转换;

2)定、转子铁心结构类似,均呈凸极结构;

3)永磁体和电枢绕组均位于定子,与转子永磁型电机相比,可方便地对永磁体进行直接冷却,从而控制其温升;

4)凸极转子仅由导磁材料构成,既无永磁体,也没有绕组,结构特别简单可靠,并且易于和某些应用对象直接藕合,集成一体 ;

5)电枢绕组多为集中式绕组,端部短,用铜少,电枢绕组的电阻小,铜耗低。 另一方面,由于不同类型电机中永磁体用量和布置方式不同,导致其不同的性能和特点。比如,DSPM电机的永磁体用量较少,磁链为单极性,其转矩密度也相对较低;而FSPM电机的永磁体用量较多,并且磁链为双极性,其转矩密度较高。此外,它们的感应电势波形也不同,DSPM电机和FRPM电机的电势波形基本呈梯形波,更适合采用BLDC控制模式,而FSPM电机的电势具有正弦波形,更适合BLAC控制方式等。

查看详情

定子永磁型无刷电机FRPM电机

磁通反向电机,即FRPM电机 ,是一种将永磁体直接安装在定子齿表面的定子永磁型无刷电机。其结构特点是,在每个定子齿与气隙接触的表面安装两块磁化方向相反的永磁体,当转子旋转到不同的永磁体下面与定子齿对齐时,根据磁阻最小原理,极性相反的永磁磁通就会穿过定子侧的绕组,从而在电枢绕组中匝链极性和数值都随转子位置变化的永磁磁通并感应出电动势。需要注意的是,不同于DSPM电机,FRPM电机的电枢绕组磁链呈现双极性,在FRPM电机中,也可以通过转子斜槽来获得正弦的电枢感应电势。 在FRPM电机中,由于永磁体处于定子齿表面,使得电枢绕组具有较强的相间隔离作用,提高了该电机的容错能力,并且减小了电枢电感的变化范围,进而使得磁阻转矩的幅值相对于永磁转矩可以忽略不计。图7给出两台多极FRPM电机结构,永磁体分别贴于定子齿表面和内嵌于定子齿端部。此外,可以将FRPM电机设计成具有互补绕组的三相FRPM结构,通过特别的定子齿与转子极配合,虽然单个线圈电势为非正弦,但每相绕组电势由于互补作用而呈现较好的正弦度。

但是,在FRPM电机中,相邻永磁体之间的漏磁较为严重,永磁体涡流损耗也较大,并且功率因数较低,这些因素在一定程度上限制了该电机的发展。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639