选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

双极-CMOS集成电路

双极-CMOS集成电路(BiCMOS)由双极型门电路和互补金属-氧化物——半导体(CMOS)门电路构成的集成电路。特点是将双极(Bipolar)工艺和CMOS工艺兼容,在同一芯片上以一定的电路形式将双极型电路和CMOS电路集成在一起,兼有高密度 、低功耗和高速大驱动能力等特点。

双极-CMOS集成电路基本信息

双极-CMOS集成电路BiCMOS器件和电路及其制造技术

(1)高速BiCMOS器件制作技术

1)以CMOS为基础的BiCMOS工艺

BiCMOS技术是将单、双极两种工艺合适地融合在一起的技术,但这绝不是简单、机械地掺和在一起,很多工艺可以一块儿或设法结合在一起做。BiCMOS工艺主要有两种:一是以CMOS为基础的BiCMOS工艺,这种工艺对保证CMOS器件的性能较为有利;二是以双极工艺为基础的BiCMOS工艺,这种工艺比较张扬BJT器件的性能。图1是以CMOS为基础的0.8μm BiCMOS器件的纵向剖面图。

BiCMOS-C型是只使用少数双极性晶体管来驱动长线一输出缓存器,而BiCMOS-E型则主要是以ECL技术为主,用CMOS晶体管做为大型存储部件。这两种类型的BiCMOS由于需要将双极性晶

双极-CMOS集成电路(BiCMOS)体管和MOSFET(金属氧化半导体场效应晶体管)集成于同一芯片,生产工艺复杂,比制造同种复杂程序的CMOS器件花费要高,它的成功与否将取决于CMOS、GaAs在其各自应用领域取得成功的程度。BiCMOS-E性能不及GaAs与纯ECL技术,因此在高档应用场合性能不能与GaAs与纯ECL相抗衡。另一方面,BiCMOS的价格又不如CMOS便宜,因此,BiCMOS-C必须争取在价格上接近于CMOS,而在性能上又要能赶上GaAs技术。

由图1可见,以外延双阱CMOS工艺为基础,在N阱内增加了N 埋层和集电极接触深N 注入(图中左边BJT),以减少BJT器件的集电极串联电阻阻值,降低饱和管压降;用P 区(或N 区)注入制作基区;发射区采取多晶硅掺杂形式,与MOS器件的栅区掺杂形式一致,制作多晶硅BJT器件。因此这种高速BiCMOS制造工艺原则上不需要增加其它的重要工序。

2)以双极工艺为基础的BiCMOS工艺

在国外,先进的双极工艺一旦被开发出来,就被用于BiCMOS工艺。以双极工艺为基础的BiCMOS工艺即为一例,这种工艺的BiCMOS既顾全了CMOS器件,使其与纯CMOS工艺中的器件相比性能毫不逊色;同时又兼顾了BJT器件,使其与新的纯双极工艺中的器件不相上下。

这种工艺是在双阱CMOS工艺中加上精心设计的4张版图来制作BJT器件的。该BiCMOS工艺中BJT器件的外基区和PMOS管的源、漏区同时形成,BJT器件的发射区可与NMOS管的源、漏区同时形成。所制作的BiCMOS器件纵向剖面图如图2所示。

双极-CMOS集成电路(BiCMOS)

(2)高速BiCMOS电路制作工艺和微细加工技术的特殊考虑

1)双阱结构中的阱结构尺寸及其埋层

对BiCMOS电路来说,需要仔细研究CMOS阱和BJT器件的集电极的工艺要求。一个主要的工艺设计折衷方案涉及到外延层和阱的轮廓特性。对于BJT器件,一方面集电极-发射极之间的反向击穿电压U(BR)CEO、集电极电阻和电容,以及生产工艺的可控制性决定了外延层的最低厚度;另一方面,如果外延层太厚,特征频率fT就会下降而集电极电阻RC值就会增大。对于MOS器件,在制作PMOS器件时使用N 埋层就要求外延层必须足够厚,以避免过大的结电容和PMOS器件的背偏置体效应(back-bias body effect)。

双阱结构中的N阱不仅影响PMOS器件,而且也可作为NPN型BJT器件的集电极。因此,除了应充分保证CMOS器件的性能以外,N阱掺杂既要足够重以防止Kirk效应(Kirk effect),同时又应足够轻,以增高BJT器件的U(BR)CEO。

2)外延层与自掺杂

在两种类型的埋层上生成轻掺杂的薄外延层,对外延沉积工艺来说是一种挑战。必须使在垂直和水平方向的两种类型杂质的自掺杂尽量地小,以避免在阱中需要过量的反掺杂。

3)利用杂质离子注入降低MOS器件阈值电压

在PMOS器件的沟道区通过硼离子注入调节,降低其阈值电压;制作NMOS器件沟道区时注入磷离子,不仅可使NMOS器件的阈值电压分散性大为减小,而且还可减小N阱同P型衬垫的掺杂浓度比值。这一技术意味着N阱区掺杂浓度可以降低,因而NMOS器件的阈值电压大为减小,结果使通信用BiCMOS电路可在低电源电压(3.3V)下工作。

4)用硅栅自对准工艺减小交叠电容

制作MOS器件时采用硅栅自对准(在栅下源、漏区极少扩展)工艺,使栅-源和栅-漏扩散区的重叠大大减小,栅-源及栅-漏交叠电容相应地大为减小。这样做有利于硅栅双阱BiCMOS电路的工作速度得以提高。此外,硅栅自对准工艺也可明显减小设计同样沟长的MOS器件所需要的版图尺寸,因而芯片的集成度得到了提高(大约提高30%)。

5)用高电阻率P型硅衬垫来提高工作速度

BiCMOS器件应采用高电阻率P型硅衬垫,这样既与CMOS、射极耦合逻辑电路(ECL)和砷化硅(GaAs)工艺有良好的兼容性,又降低了NMOS器件的结电容,有利于提高通信和信息处理用BiCMOS电路的速度。

查看详情

双极-CMOS集成电路造价信息

  • 市场价
  • 信息价
  • 询价

集成电路测试仪

  • 1CT-33C
  • 13%
  • 成都天大仪器设备有限公司
  • 2022-12-07
查看价格

集成电路测试仪

  • 1ST6500
  • 13%
  • 成都天大仪器设备有限公司
  • 2022-12-07
查看价格

集成电路测试仪

  • GVT-6600
  • 13%
  • 成都天大仪器设备有限公司
  • 2022-12-07
查看价格

集成电路测试仪

  • GUT-660A
  • 13%
  • 成都天大仪器设备有限公司
  • 2022-12-07
查看价格

集成电路测试仪

  • SIMI-100
  • 13%
  • 成都天大仪器设备有限公司
  • 2022-12-07
查看价格

电动葫芦双

  • 提升质量20t
  • 台班
  • 汕头市2012年4季度信息价
  • 建筑工程
查看价格

电动葫芦双

  • 提升质量10t
  • 台班
  • 汕头市2012年3季度信息价
  • 建筑工程
查看价格

电动葫芦双

  • 提升质量10t
  • 台班
  • 汕头市2011年2季度信息价
  • 建筑工程
查看价格

电动葫芦双

  • 提升质量20t
  • 台班
  • 汕头市2011年2季度信息价
  • 建筑工程
查看价格

电动葫芦双

  • 提升质量10t
  • 台班
  • 汕头市2011年1季度信息价
  • 建筑工程
查看价格

集成电路控制中心

  • 800×800×1500
  • 1台
  • 1
  • 百海(深圳)水处理有限公司
  • 中高档
  • 含税费 | 含运费
  • 2021-06-15
查看价格

集成电路测试仪

  • 1ST6500
  • 7台
  • 1
  • 普通
  • 含税费 | 含运费
  • 2015-11-02
查看价格

集成电路测试仪

  • 1CT-33C
  • 4台
  • 1
  • 普通
  • 不含税费 | 不含运费
  • 2015-08-05
查看价格

集成电路测试仪

  • GUT-660A
  • 9台
  • 1
  • 普通
  • 含税费 | 不含运费
  • 2015-07-31
查看价格

集成电路测试仪

  • GVT-6600
  • 4台
  • 1
  • 普通
  • 含税费 | 含运费
  • 2015-04-07
查看价格

双极-CMOS集成电路BiCMOS技术的应用前景和发展趋势

(1) 通信SOC高性能BiCMOS技术的一个重要研发方向

最近几年来,通信应用频率正在不断增加,几乎所有应用领域都将进入双吉赫兹频段。如何顺应通信形势发展的要求,将通信系统中多种功能集成在一个芯片上,即组成片上系统(System On a Chip,简称SOC),则无疑是一种较佳的解决方案。这样一来,SOC不再仅仅限于低频CMOS芯片的设计中,而且也包括了高频有线和无线通信BiCMOS芯片,这是当今高性能BiCMOS技术的一个重要研发方向。

SOC的概念是在20世纪90年代提出来的,它既克服了多芯片集成系统制作和运行中所产生的一些困难,又获得了更高的系统性能。例如,CPU芯片工作速度非常高(传输延迟小于几十皮秒),但是如果存储器芯片依旧与CPU分开,则由于访址延时的加入,这种高速性能在计算机通信和未来个人通信中就体现不出来。即便使用光束传送信号,延时也只有3.3ps/mm。这就要求把存储器和CPU集成到一个芯片上去。可以预见,将更多功能集成到一个芯片上,还能解决今后芯片管脚数目增多、测试困难和成本较高等一系列问题。

SOC主要有3种类型:一是以CPU为核心,集成各种存储器、控制电路和系统时钟等,乃至集I/O功能和A/D、D/A转换功能于一个芯片上;二是以数字信号处理器(DSP)为核心,多功能集成;三是上述2种之混合或者把系统算法与芯片结构有机结合的SOC。

总之,SOC的发展并不仅仅是设计上的问题,而且也是先进的工艺技术的实现问题。SOC是很多模块的集成,而且各种模块电路功能的不同,对工艺的要求也是不一样的,有的要求高集成度,有的要求高速,有的要求强驱动,有的则要求低功耗;有的是数字电路,而有的则是模拟电路。但是,BiCMOS工艺更能满足如此复杂的技术要求,先进的BiCMOS技术将会使发展通信SOC如虎添翼。

(2) 低压、全摆幅、高速BiCMOS电路的一个研究热点

如今,数字通信和internet网络的电子产品对其中VLSI芯片低电源电压、全输出逻辑摆幅的要求日趋迫切。例如便携式电子产品(如手机、笔记本电脑和个人数字助理等)因用电池供电,故电源电力极为有限,降低电源电压不仅对减少电池充电次数、延长电池寿命,而且对减小IC器件的电场强度,以防止热击穿或热电子效应,都是非常必要的。先进的BiCMOS技术已被证明在低压、高速方面优于CMOS技术。但是,BiCMOS数字集成电路存在的问题是:降低电源供电电压,势必影响到提高工作速度。已设计成功的逻辑单元电路有:瞬时饱和全摆幅式、电荷泵抽取式、钳位全摆幅式(图3(b))、自举全摆幅式BiCMOS数字逻辑集成门电路、BiCMOS三态门和BiCMOS连线逻辑电路等等。2100433B

查看详情

双极-CMOS集成电路双极-CMOS集成电路(BiCMOS)

双极-CMOS集成电路(BiCMOS)双极-CMOS集成电路(BiCMOS)由双极型门电路和互补金属-氧化物——半导体(CMOS)门电路构成的集成电路。特点是将双极(Bipolar)工艺和CMOS工艺兼容,在同一芯片上以一定的电路形式将双极型电路和CMOS电路集成在一起,兼有高密度 、低功耗和高速大驱动能力等特点。

高性能BiCMOS电路于20世纪80年代初提出并实现,主要应用在高速静态存储器、高速门阵列以及其他高速数字电路中,还可以制造出性能优良的模/数混合电路,用于系统集成。有人预言,BiCMOS集成电路是继CMOS集成电路形式之后最现实的下一代高速集成电路形式。

查看详情

双极-CMOS集成电路常见问题

查看详情

双极-CMOS集成电路BiCMOS技术的典型应用

(1) 通信用数字逻辑电路、数字部件和门阵列等

由第二节可知,BiCMOS电路的优化组合是用CMOS电路充当高集成度、低功耗的电路部分,而仅用双极型电路来做输入/输出(I/O)电路部分,这是最早的BiCMOS数字集成电路的设计方案。后来,更先进的BiCMOS技术将BJT器件也集成到逻辑门中。与传统的CMOS门一样,由于门电路输出端两管轮番导通,所以这种BiCMOS逻辑门静态功耗接近于零,而且在同样的设计尺寸下,它们的速度将更快。尽管BJT器件的加入会增加20%的芯片面积,但是考虑到其带负载能力的增强,BiCMOS门的实际集成度比CMOS门将有所增加。比较典型的BiCMOS逻辑门有:反相器(非门)、三态缓冲/驱动器、与非门和或非门,它们分别如图3(a)、(b)、(c)、(d)所示。本课题对这4个门均已进行了硬件电路实验,所得实验数据为:平均传输延迟仅为十几纳秒,静态功耗近似为零,动态平均功耗也只有1~2mW。

双极-CMOS集成电路(BiCMOS)

BiCMOS逻辑门在通信数字部件(如编码器、译码器和模/数转换器等)和门阵列的应用中极为广泛,因为它的扇出数一般为5~8,如此大的扇出数意味着具有较强的带负载能力,而且BiCMOS门比CMOS门能更快速地驱动这些负载。另外,BiCMOS门中的器件尺寸可以是一致的,这就降低了通信数字部件在物理设计上的难度;不同的CMOS电路对减小单位负载的传输延迟往往不同,而对于BiCMOS电路,由于双极型推挽BJT器件隔开了CMOS电路的主体与负载,使得不同电路中负载的状况变差都是相同的,这样就简化了通信和信息处理用数字逻辑部件和电路的设计任务,提高了工作效率。

(2) 通信用数字信号处理器(DSP)和微处理器(CPU)

若通信DSP和CPU等采用CMOS工艺,则芯片外主线就要有较大的带电容负载的能力。传统的接口驱动电路采用双极工艺制作,这样可以保证数据传输速度,但是功耗却大了些。以32位CPU为例,它包含有10个或者更多的接口器件,但同一时间内只有一条主线是激活的,亦即每一条主线有90%的时间不工作。由于这种接口器件是单纯双极型的,即使不在工作时它也在不停地消耗功率,所以整个CPU的静态功耗将会增大。

如果用BiCMOS器件做成接口驱动电路,则处于非门工作状态的驱动器取用的电流就要小多了。在很多情况下,静态功耗可以节省接近100%,而传统主线接口驱动电路的功耗约占整个系统功耗的30%,故这种节电效果非常显著,因而特别适用于手机、个人数字处理器和笔记本电脑等一类使用电池的通信、计算机和网络设备中。更为有利的是,BiCMOS数字集成电路的速度与先进的双极型电路不相上下,这与高速数字通信系统的速度要求是相适应的。

用0.8μm BiCMOS已研制出主频为100MHz的32位CPU电路。该电路中CMOS器件占97%,而BJT器件只占3%,BJT器件仅用于驱动大负载电容或放大小的电平摆幅信号。图4为算术逻辑单元(ALU)中四位一组的BiCMOS进位传输电路。图中Φ1为系统时钟,Φ2为预充时钟。由于BJT器件的存在,预充电平决定于BJT器件发射结压降,所以预充电平降低为0.8V上下。电平摆幅的减小有利于提高该电路的运算速度。32位字长的ALU要求有8个这样的进位传输电路,它的总传输延迟只有7.2ns,功耗也只有十几毫瓦。

(3) 通信用BiCMOS SRAM和ROM等

由于纯CMOS工艺无法生产出通信专用的高速度、大负载驱动能力的SRAM和只读存储器(ROM)芯片,而BiCMOS SRAM和ROM芯片拥有与CMOS SRAM和ROM较为接近的集成度、功耗和更高的速度,故先进的BiCMOS技术给SRAM和ROM产品的速度、容量和功耗等性能指标的调和、折衷和互补提供了回旋余地。现以BiCMOS SRAM为例,介绍图5所示的设计方案。它的主体存储矩阵用P阱中专门设计的BiCMOS存储单元组成,所设计的6管BiCMOS存储单元如图6所示,制作这种BiCMOS存储矩阵的模块区与CMOS的大致相同或略高;而图5中的地址译码器、字线/位线驱动器和读写控制电路及灵敏放大器等则可用BiCMOS电路。与全CMOS SRAM相比,本文提出的BiCMOS SRAM在低压(VDD=3.3 V)下,其存储单元存取速度提高了接近3倍,读/写一次仅需时6~8 ns,而且其备用单元功耗约为45.2nW/bit,而实用单元功耗也只有6.89μW/bit,均为较低的存储单元功耗水平。这一结果充分表明了新的BiCMOS SRAM电路结构是通信用高速、低压SRAM中较为理想的一种设计方案。

双极-CMOS集成电路(BiCMOS)

双极-CMOS集成电路(BiCMOS)

同理,该设计思路同样适用于ROM和可编程逻辑器件(PLD)的字线/位线驱动器、改写电路和读控制电路以及其它通信ASIC芯片的存储系统中。

(4) 通信模/数混合电路的应用

用BiCMOS工艺可以将模拟和数字电路集成在同一块芯片上。当然芯片上大部分面积是有数字信号处理功能的CMOS单元电路,而剩下的芯片面积(约占15%~20%)用来做模拟电路单元以及芯片与外界模拟世界的接口电路。这些模拟电路单元包括I/O(包含电阻和NPN型BJT器件)、用BJT器件制作的运算放大器、参考电压和电流源、锁存比较器和NPN型BJT器件组成的模拟电路(例如直接用来驱动LED的电路)等。这种专用芯片可以用来做SDR系统的ADC和DAC、接/发射机的模/数混合电路以及其它通信系统应用场合。

因为MOS管的阈值电压UTH对工艺过程和器件尺寸非常敏感,而BJT器件的开启电压UBE比UTH更容易精确控制,所以BJT器件更容易得到性能良好的匹配对管。这种优良匹配对管的双极型集成运算放大器的补偿电压比MOS运放小一个数量级。BiCMOS运算放大器具有双极型电路部分的低输入补偿电压和高增益,以及CMOS电路部分的低功耗和高集成度。这种强强联合的先进工艺,亦被用于软件无线电(SDR)系统中的高速、低功耗A/D和D/A转换器。

查看详情

双极-CMOS集成电路文献

双极型集成电路 双极型集成电路

双极型集成电路

格式:pdf

大小:4.5MB

页数: 32页

双极型集成电路

CMOS集成电路排气扇节电自动控制 CMOS集成电路排气扇节电自动控制

CMOS集成电路排气扇节电自动控制

格式:pdf

大小:4.5MB

页数: 2页

本文采用低功耗CMOS集成电路构成排气扇节电自动控制电路,比采用分立元件组成的线路更为简单、可靠性高、易于制作、稍作调试即可正常工作。 1.工作原理电路原理如图1所示,做成的电气箱如图2所示。A为CMOS可编程定时集成电路

双极型集成电路发展简况

双极型集成电路是在硅平面晶体管的基础上发展起来的,最早的是双极型数字逻辑集成电路。在数字逻辑集成电路的发展过程中,曾出现过多种不同类型的电路形式。常见的双极型集成电路可分类如下。

DCTL电路是第一种双极型数字逻辑集成电路,因存在严重的"抢电流"问题(见电阻-晶体管逻辑电路)而不实用。RTL电路是第一种有实用价值的双极型集成电路。早期的数字逻辑系统曾采用过 RTL电路,后因基极输入回路上有电阻存在,限制了开关速度。此外,RTL逻辑电路的抗干扰的性能较差,使用时负载又不能多,因而被淘汰。电阻-电容-晶体管逻辑电路(RCTL)是为了改善RTL电路的开关速度而提出来的,即在RTL电路的电阻上并接电容。实际上 RCTL电路也未得到发展。DTL电路是继 RTL电路之后为提高逻辑电路抗干扰能力而提出来的。DTL电路在线路上采用了电平位移二极管,抗干扰能力可用电平位移二极管的个数来调节。常用的 DTL电路的电平位移二极管,是用两个硅二极管串接而成,其抗干扰能力可提高到1.4伏左右(见二极管-晶体管逻辑电路)。HTL电路是在 DTL电路的基础上派生出来的。HTL电路采用反接的齐纳二极管代替DTL电路的电平位移二极管,使电路的阈值提高到约7.4伏左右(见高阈值逻辑电路)。可变阈值逻辑电路(VTL)也是DTL电路系列中的另一种变形电路。阈值逻辑电路(TLC)是 HTL和VTL逻辑电路的总称。TTL逻辑电路是在DTL逻辑电路基础上演变而来,于1962年研制成功。为了提高开关速度和降低电路功耗,TTL电路在线路结构上经历了三代电路形式的改进(见晶体管-晶体管逻辑电路)。

以上均属饱和型电路。在进一步探索提高饱和型电路开关速度的同时,发现晶体管多余载流子的存储效应是一个极重要的障碍。存储现象实质上是电路在开关转换过程中由多余载流子所引起。要提高电路开关速度,除了减少晶体管PN结电容,或者设法缩短多余载流子的寿命以外,就得减少和消除晶体管内载流子存储现象。60年代末和70年代初,人们开始在集成电路中利用熟知的肖特基效应。在TTL电路上制备肖特基势垒二极管,把它并接在原有晶体管的基极和集电极上,使晶体管开关时间缩短到1纳秒左右;带肖特基势垒二极管箝位的TTL门电路的平均传输延迟时间达2~4纳秒。

肖特基势垒二极管-晶体管-晶体管逻辑电路(STTL)属于第三代 TTL电路。它在线路上采用了肖特基势垒二极管箝位方法,使晶体管处于临界饱和状态,从而消除和避免了载流子存储效应。与此同时,在TTL电路与非门输出级倒相器的基极引入晶体管分流器,可以改善与非门特性。三极管带有肖特基势垒二极管,可避免进入饱和区,具有高速性能;输出管加上分流器,可保持输出级倒相的抗饱和程度。这类双极型集成电路,已不再属于饱和型集成电路,而属于另一类开关速度快得多的抗饱和型集成电路。

发射极耦合逻辑电路(ECL)是电流型逻辑电路(CML)。这是一种电流开关电路,电路的晶体管工作在非饱和状态,电路的开关速度比通常TTL电路又快几倍。ECL逻辑电路把电路开关速度提高到 1纳秒左右,大大超过 TTL和STTL电路。ECL电路的出现,使双极型集成电路进入超高速电路范围。

集成注入逻辑电路 (I2L)又称合并晶体管逻辑电路(MTL),是70年代研制成的。在双极型集成电路中,I2L电路的集成密度是最高的。

三层结构逻辑电路(3TL)是1976年中国在I2L电路的基础上改进而成,因有三层结构而得名。3TL逻辑电路采用NPN管为电流源,输出管采用金属做集电极(PNM),不同于I2L结构。

多元逻辑电路(DYL)和双层逻辑电路(DLL),是1978年中国研制成功的新型逻辑电路。DYL逻辑电路线性与或门,能同时实现开关逻辑和线性逻辑处理功能。DLL电路是通过ECL和TTL逻辑电路双信息内部变换来实现电路逻辑功能的。

此外,在双极型集成电路发展过程中,还有许多其他型式的电路。例如,发射极功能逻辑电路(EFL)、互补晶体管逻辑电路(CTL)、抗辐照互补恒流逻辑电路(C3L)、电流参差逻辑电路(CHL)、三态逻辑电路(TSL)和非阈值逻辑电路(NTL)等。

查看详情

双极型与CMOS放大器分析简介

首先向网友强调,这是一本书。。。

双极型与CMOS放大器分析

作 者: (美)Amir M.Sodagar 著,王志华,李冬梅,杨东 译

出 版 社: 科学出版社

出版时间: 2009-11-1

开 本: 16开

I S B N: 9787030257949

定价:¥45.00

(广告)

查看详情

CMOS集成电路设计手册&nbsp

CMOS集成电路设计手册(第3版·基础篇)荣获美国工程教育协会奖

CMOS集成电路设计手册(第3版·基础篇)是CMOS集成电路设计领域的权威书籍,有着以下的优点

1. 专门讨论了CMOS集成电路设计的基础知识。

2. 详细讨论了CMOS集成电路的结构、工艺以及相关的电参数知识。

3. 理论知识的讨论深入浅出,有利于读者理解。

4. 对书中涵盖的内容,作者做了较为详细的描述,细致入微,有助于读者打下坚实的理论的基础。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639