选择特殊符号
选择搜索类型
请输入搜索
声波是观察和测量的重要手段。有趣的是,英文"sound"一词作为名词是"声 "的意思,作为动词就有"探测"的意思,可见声与探测关系之紧密。
在水中进行观察和测量,具有得天独厚条件的只有声波。这是由于其他探测手段的作用距离都很短,光在水中的穿透能力很有限,即使在最清澈的海水中,人们也只能看到十几米到几十米内的物体;电磁波在水中也衰减太快,而且波长越短,损失越大,即使用大功率的低频电磁波,也只能传播几十米。然而,声波在水中传播的衰减就小得多,在深海声道中爆炸一个几公斤的炸弹,在两万公里外还可以收到信号,低频的声波还可以穿透海底几千米的地层,并且得到地层中的信息。在水中进行测量和观察,至今还没有发现比声波更有效的手段。
作为一种声学探测设备,主动式声呐是在英国首先投入使用的,不过英国人把这种设备称为"ASDIC"(潜艇探测器),美国人称其为"SONAR",后来英国人也接受了此叫法。
由于电磁波在水中衰减的速率非常的高,无法做为侦测的讯号来源,以声波探测水面下的人造物体成为运用最广泛的手段。无论是潜艇或者是水面船只,都利用这项技术的衍生系统,探测水底下的物体,或者是以其作为导航的依据。
作远距离传输的能量形式。于是探测水下目标的技术--声呐技术便应运而生。 声呐技术至今已有100年历史,它是1906年由英国海军的刘易斯·尼克森所发明。他发明的第一部声呐仪是一种被动式的聆听装置,主要用来侦测冰山。这种技术,到第一次世界大战时被应用到战场上,用来侦测潜藏在水底的潜水艇。
声呐是各国海军进行水下监视使用的主要技术,用于对水下目标进行探测、分类、定位和跟踪;进行水下通信和导航,保障舰艇、反潜飞机和反潜直升机的战术机动和水中武器的使用。此外,声呐技术还广泛用于鱼雷制导、水雷引信,以及鱼群探测、海洋石油勘探、船舶导航、水下作业、水文测量和海底地质地貌的勘测等。
和许多科学技术的发展一样,社会的需要和科技的进步促进了声呐技术的发展。 俄罗斯海军专门将一艘核子K-403号潜艇改成声呐测试用艇,可见重视程度。
声呐是英文缩写"SONAR"的音译,其中文全称为:声音导航与测距,Sound Navigation And Ranging"是一种利用声波在水下的传播特性,通过电声转换和信息处理,完成水下探测和通讯任务的电子设备。它有主动式和被动式两种类型,属于声学定位的范畴。声呐是利用水中声波对水下目标进行探测、定位和通信的电子设备,是水声学中应用最广泛、最重要的一种装置。
声呐装置一般由基阵、电子机柜和辅助设备三部分组成。基阵由水声换能器以一定几何图形排列组合而成,其外形通常为球形、柱形、平板形或线列行,有接收基阵、发射机阵或收发合一基阵之分。电子机柜一般有发射、接收、显示和控制等分系统。辅助设备包括电源设备、连接电缆、水下接线箱和增音机、与声呐基阵的传动控制相配套的升降、回转、俯仰、收放、拖曳、吊放、投放等装置,以及声呐导流罩等。
换能器是声呐中的重要器件,它是声能与其它形式的能如机械能、电能、磁能等相互转换的装置。它有两个用途:一是在水下发射声波,称为"发射换能器",相当于空气中的扬声器;二是在水下接收声波,称为"接收换能器",相当于空气中的传声器(俗称"麦克风"或"话筒")。换能器在实际使用时往往同时用于发射和接收声波,专门用于接收的换能器又称为"水听器"。换能器的工作原理是利用某些材料在电场或磁场的作用下发生伸缩的压电效应或磁致伸缩效应。
声呐的分类可按其工作方式,按装备对象,按战术用途、按基阵携带方式和技术特点等分类方法分成为各种不同的声呐。例如按工作方式可分为主动声呐和被动声呐;按装备对象可分为水面舰艇声呐、潜艇声呐、航空声呐、便携式声呐和海岸声呐等。
主动声呐:主动声呐技术是指声呐主动发射声波"照射"目标,而后接收水中目标反射的回波时间,以及回波参数以测定目标的参数。大多数采用脉冲体制,也有采用连续波体制的。它由简单的回声探测仪器演变而来,它主动地发射声波,然后接收回波进行计算,适用于探测冰山、暗礁、沉船、海深、鱼群、水雷和关闭了发动机的隐蔽的潜艇;
被动声呐:被动声呐技术是指声呐被动接收舰船等水中目标产生的辐射噪声和水声设备发射的信号,以测定目标的方位和距离。它由简单的水听器演变而来,它收听目标发出的噪声,判断出目标的位置和某些特性,特别适用于不能发声暴露自己而又要探测敌舰活动的潜艇。
影响声呐工作性能的因素除声呐本身的技术状况外,外界条件的影响很严重。 比较直接的因素有传播衰减、多路径效应、混响干扰、海洋噪声、自噪声、目标反射特征或辐射噪声强度等,它们大多与海洋环境因素有关。例如,声波在传播途中受海水介质不均匀分布和海面、海底的影响和制约,会产生折射、散射、反射和干涉,会产生声线弯曲、信号起伏和畸变,造成传播途径的改变,以及出现声阴区,严重影响声呐的作用距离和测量精度。现代声呐根据海区声速--深度变化形成的传播条件,可适当选择基阵工作深度和俯仰角,利用声波的不同传播途径(直达声、海底反射声、会聚区、深海声道)来克服水声传播条件的不利影响,提高声呐探测距离。又如,运载平台的自噪声主要与航速有关,航速越大自噪声越大,声呐作用距离就越近,反之则越远;目标反射本领越大,被对方主动声呐发现的距离就越远;目标辐射噪声强度越大,被对方被动声呐发现的距离就越远。
声呐并非人类的专利,不少动物都有它们自己的"声呐"。蝙蝠就用喉头发射每秒10-20次的超声脉冲而用耳朵接收其回波,借助这种"主动声呐"它可以探查到很细小的昆虫及0.1mm粗细的金属丝障碍物。而飞蛾等昆虫也具有"被动声呐",能清晰地听到40m以外的蝙蝠超声,因而往往得以逃避攻击。然而有的蝙蝠能使用超出昆虫侦听范围的高频超声或低频超声,从而使捕捉昆虫的命中率仍然很高。看来,动物也和人类一样进行着"声呐战"!海豚和鲸等海洋哺乳动物则拥有"水下声呐",它们能产生一种十分确定的讯号探寻食物和相互通迅。
多种鲸类都用声来探测和通信,它们使用的频率比海豚的低得多,作用距离也远得多。其他海洋哺乳动物,如海豹、海狮等也都会发射出声呐信号,进行探测。
海豚声呐的灵敏度很高,能发现几米以外直径0.2mm的金属丝和直径lmm的尼龙绳,能区别开只相差200卜s时间的两个信号,能发现几百米外的鱼群,能遮住眼睛在插满竹竿的水池子中灵活迅速地穿行而不会碰到竹竿;海豚声呐的"目标识别"能力很强,不但能识别不同的鱼类,区分开黄铜、铝、电木、塑料等不同的物质材料,还能区分开自己发声的回波和人们录下它的声音而重放的声波;海豚声呐的抗干扰能力也是惊人的,如果有噪声干扰,它会提高叫声的强度盖过噪声,以使自己的判断不受影响;而且,海豚声呐还具有感情表达能力,已经证实海豚是一种有"语言"的动物,它们的"交谈"正是通过其声呐系统。尤其是仅存于世的四种淡水豚中最珍贵的一种-我国长江中下游的白鳍豚,它的声呐系统"分工"明确,有为定位用的,有为通讯用的,有为报警用的,并有通过调频来调制位相的特殊功能。
终身在极度黑暗的大洋深处生活的动物是不得不采用声呐等各种手段来搜寻猎物和防避攻击的,它们的声呐的性能是人类现代技术所远不能及的。解开这些动物声呐的谜,一直是现代声呐技术的重要研究课题。而我们人类发明的"声呐"就是通过鲸和海豚的原理发明的。
LLC工作原理
LLC工作原理详细讲解 要了解 LLC,就要先了解软开关。 对于普通的拓扑而言, 在开关管开关时, MOSFET 的 D-S间的电压与电流产生交叠,因此产生开关损耗。如图所示。 为了减小开关时的交叠,人们提出了零电流开关( ZCS)和零电压开关 (ZVS)两种 软开关的方法。对于 ZCS:使开关管的电流在开通时保持在零,在关断前使电流 降到零。对于 ZVS:使开关管的电压在开通前降到零,在关断时保持为零。 最早的软开关技术是采用有损缓冲电路来实现。从能量的角度来看,它是将开关损耗转移到缓冲电路中消耗掉,从而改善开 关管的工作条件。这种方法对变换器的效率没有提高,甚至会使效率降低。目前所研究的软开关技术不再采用有损缓冲电路, 这种技术真正减小了开关损耗,而不是损耗的转移,这就是谐振技术。而谐振变换器又分为全谐振变换器,准谐振变换器,零 开关 PWM变换器和零转换 PWM变换器。全谐振变换器的
CMTS工作原理
广电 HFC-CMTS & Cable Modem基本工作原理 Cable Modem(简称 CM)是广电 HFC系统中用来向用户提供高速宽带 Internet 接入服务,这种接入方式能为用户提供最高达 38Mbps的接入速度. CM一般放在 用户家中,作为一种终端设备,它连接用户的 PC机和 HFC网络,它与 CMTS是 HFC系统中双向通信时必不可少的设备.如图1. CM系统基于 DOCSIS1.1标准而设计,系统由前端设备 CMTS和用户端设备 CM 组成。 CMTS是作为前端路由器、交换集线器与 CATV网络之间的连接设备, CM 通过 CMTS与广域网( Internet) 实现连接。 CMTS是管理和控制 CM的设备,主要 配置有下行频率点分配、下行调制方式、下行电平、 DHCP、TFTP与 TOD服务器 等。 DHCP服务器是用作动态分配给每个 CM的 IP 地址的, TFT
在人们熟知的各种辐射形式中,声波在海水中的传播为最佳。在混浊和含盐的海水中,无论光波或电磁波的衰减都远较声波的衰减为大。利用声能进行水下探测和通信的设备均称为声呐。声呐是英文缩写“SONAR”的音译,其中文全称为:声音导航与测距,是一种利用声波在水下的传播特性,通过电声转换和信息处理,完成水下探测和通讯任务的电子设备。它有主动式和被动式两种类型,属于声学定位的范畴。声呐是利用水中声波对水下目标进行探测、定位和通信的电子设备,是水声学中应用最广泛、最重要的一种装置 。
声呐是各国海军进行水下监视使用的主要技术,用于对水下目标进行探测、分类、定位和跟踪;进行水下通信和导航,保障舰艇、反潜飞机和反潜直升机的战术机动和水中武器的使用。此外,声呐技术还广泛用于鱼雷制导、水雷引信,以及鱼群探测、海洋石油勘探、船舶导航、水下作业、水文测量和海底地质地貌的勘测等 。