选择特殊符号
选择搜索类型
请输入搜索
简介:上海亿烨信息科技有限公司成立于2010年11月22日,主要经营范围为计算机科技领域内的技术开发、技术服务、技术咨询、技术转让,网络工程,市场信息咨询与调查(不得从事社会调查、社会调研、民意调查、...
简介:宁波中瑞信息科技有限公司成立于2007年04月11日,主要经营范围为一般经营项目:公共软件服务等。法定代表人:张坚成立时间:2007-04-11注册资本:2000万工商注册号:330203000...
揽阁信息科技(上海)有限公司是2015-03-24在上海市青浦区注册成立的有限责任公司(自然人投资或控股),注册地址位于上海市青浦区沪青平公路9565号1幢2层M区230室。揽阁信息科技(上海)有限公...
河南润泽智慧信息科技有限公司企业信息报告-天眼查
河南润泽智慧信息科技有限公司企业信息报告-天眼查
一类重要的函数级数是形如
等价命题1:若A是幂等矩阵,则与A相似的任意矩阵是幂等矩阵;
等价命题2:若A是幂等矩阵,则A的AH,AT,A*,E-AH,E-AT都是幂等矩阵;
等价命题3:若A是幂等矩阵,则对于任意可逆阵T,T^(-1)·A·T也为幂等矩阵;
等价命题4:若A是幂等矩阵,A的k次幂仍是幂等矩阵
(由于数学符号编辑问题,更多等价命题及其证明见扩展阅读1)
由于幂等矩阵所具有的良好性质及其对向量空间的划分,幂等矩阵在可对角化矩阵的分解中具有重要的作用,同时也为空间的投影过程提供了一种工具。
符号说明如下:
AT为矩阵A的转置矩阵;
AH矩阵A的共轭转置矩阵;
A*为矩阵A的伴随矩阵;
E为单位矩阵
幂等矩阵的主要性质:
1.幂等矩阵的特征值只可能是0,1;
2.幂等矩阵可对角化;
3.幂等矩阵的迹等于幂等矩阵的秩,即tr(A)=rank(A);
4.可逆的幂等矩阵为E;
5.方阵零矩阵和单位矩阵都是幂等矩阵;
6.幂等矩阵A满足:A(E-A)=(E-A)A=0;
7.幂等矩阵A:Ax=x的充要条件是x∈R(A);
8.A的核N(A)等于(E-A)的列空间R(E-A),且N(E-A)=R(A)。 考虑幂等矩阵运算后仍为幂等矩阵的要求,可以给出幂等矩阵的运算:
1)设 A1,A2都是幂等矩阵,则(A1+A2) 为幂等矩阵的充分必要条件为:A1·A2 =A2·A1 = 0,
且有:R(A1+A2) =R (A1) ⊕R (A2);N(A1+A2) =N (A1)∩N(A2);
2)设 A1, A2都是幂等矩阵,则(A1-A2) 为幂等矩阵的充分必要条件为:A1·A2 =A2·A1=A2
且有:R(A1-A2) =R(A1)∩N (A2 );N (A1 - A2 ) =N (A1 )⊕R (A2 );
3)设 A1,A2都是幂等矩阵,若A1·A2 =A2·A1,则A1·A2 为幂等矩阵, 且有:R (A1·A2 ) =R (A1 ) ∩R (A2 );N (A
1·A2 ) =N (A1 ) +N (A2 )。