选择特殊符号
选择搜索类型
请输入搜索
欧洲同步辐射加速器(右图)位于法国东南城市格勒诺贝尔,是世界上首座第三代同步辐射加速器。它所在的位置可谓山清水秀、得天独厚。格勒诺贝尔市是法国重要的科研和高技术工业城市,是阿尔卑斯山的“大门”,流经该市的两条大河在西北郊汇合,欧洲同步加速器就驻扎在这两条河之间的“半岛”上。格勒诺布尔市的人口包括郊区约40万。1968年,第十届冬季奥运会在此举行。工业、教科和旅游业是格勒诺布尔市的三大经济支柱,它的电子和计算机工业具有相当规模,号称“法国硅谷”。
同步加速器属于大型科研设备,建造、运行的投资都很高。欧洲12个国家于1988年达成协议,共同投资建造第三代同步辐射加速器,共耗资2.2亿法郎。该加速器于1994年开始启用,电子束能量为60亿电子伏特,为欧洲乃至世界的科学研究以及工业研究,提供了强有力的科研手段。每年申请前来利用同步辐射进行各种应用科学研究的科学家多达6000人,但只有2000人获准。
欧洲同步加速器主要由一个线性加速器(右图)、周长300米的同步加速器和周长844米的电子束储存环组成,被加速的电子束在储存环中经过磁结构谐振器的振荡,发出大量高精度的光束。该加速器的输出光线初建时有12条,截至2009年发展到40条(左图),每年来自世界40多个国家的研究人员使用该设备提供的高质量光源,研究物质的原子、分子结构。特别令这里的专家们自豪的是,它是世界上性能最可靠的一台加速器,运行至今从未发生过故障,成为世界上性能最好、用户最多、科研人员借助它出成果最多,即发表研究论文最多的X射线辐射光源。
第三代同步辐射加速器不仅是基础科研必需的大型科研设备,而且具有极强的应用科研背景,其建设对一个大国的科研和经济发展都具有良好的推动作用:在项目的建设中,科技人员与工业技术人员密切配合,攻克建造中的难关,不仅推动了技术的进步,而且刺激了经济的发展;建成以后,科学和工业界均得益——物理学、化学、地质科学、材料科学等学科有了重要的研究工具;工业界也利用这里实验室复制工业生产环境的能力,研究产品性能、提高产品质量。
至今为止,世界上90%的生物大分子结构是通过这种同步辐射光了解的。因此,在非常红火的功能蛋白学研究中,欧洲同步辐射加速器有着非常重要的作用。从2003年开始,欧洲同步加速器与其毗邻的,欧洲分子生物学实验室(EMBL)(以研究生物分子结构见长)、洛·兰仕凡研究所(ILL)(世界最重要的中子源产生地)、结构生物学研究所(法国最著名的结构生物学研究所之一,专家来自法国国家科研中心和原子能委员会)一起,结成结构生物学研究伙伴,专门研究用于医学目的的蛋白结构。
世界上其他发达国家也开始逐渐自己的同步辐射装置,分布如下:
国家 |
同步辐射实验室 |
类型 |
美国 |
NSLS布鲁克海文国家实验室 |
2 |
ALADDIN威斯康星同步辐射中心 |
2 |
|
SPEAR斯坦福直线加速中心 |
3 |
|
ALS劳伦斯贝克莱国家实验室 |
3 |
|
APS阿贡国家实验室 |
3 |
|
德国 |
HASLAB,DESY,汉堡 |
2 |
BESSY 柏林,物理技术所 |
3 |
|
DELTA 多特蒙德 |
3 |
|
ELSA 波恩大学 |
1 |
|
俄罗斯 |
VEPP, 新西伯利亚核物理研究所 |
1 |
Siberia, 莫斯科原子能所 |
2 |
|
英国 |
SPS, Daresbury, 达累斯堡 |
2 |
意大利 |
ADONE 弗拉丝卡地 |
2 |
ELETTRA 的里亚斯特 |
3 |
|
日本 |
Spring-8 西播摩同步辐射研究所 |
3 |
PF筑波,高能物理研究所 |
2 |
|
韩国 |
PLS 汉城浦项同步辐射光源 |
3 |
法国 |
ESRF, 格勒诺布尔 |
3 |
DCI, Lure, 奥塞 |
2 |
另外还有印度、巴西、澳大利亚、西班牙、加拿大、荷兰、瑞士、泰国、新加坡等国家均建有同步辐射光源实验室。2100433B
同步辐射加速器主要用于产生第二代同步辐射光源,利用电子在圆形轨道中的运动,发出单色光。
我国的同步辐射加速器建立在中国科学技术大学校内。 国家同步辐射实验室坐落在安徽合肥中国科技大学西校园中,这是国家计委批准建设的我国第一个国家级实验室。实验室拥有的同步辐射光源是国内高校中唯一一台大科学装置和国家级实验研究平台。
国家同步辐射实验室建有我国第一台以真空紫外和软X射线cvnbd为主的专用同步辐射光源。其主体设备是一台能量为800MeV、平均流强为100~300mA的电子储存环,用一台能量200MeV的电子直线加速器作注入器。来自储存环弯铁和扭摆磁铁的同步辐射特征波长分别为2.4nm和0.5nm。
国家同步辐射实验室一期工程1984年11月20日破土动工,1989年建成出光,1991年12月通过国家验收,总投资8,040万元人民币。1999年国家又投资11,800万元人民币进行国家同步辐射实验室二期工程建设,2004年12月二期工程通过国家验收。
国家同步辐射实验室现建有X射线光刻、红外与远红外、高空间分辨X射线成像、X射线衍射与散射、扩展X光吸收精细结构、燃烧、X射线显微术、原子与分子物理、真空紫外分析、表面物理、软X射线磁性圆二色、光电子能谱、真空紫外光谱、光声与真空紫外圆二色光谱、光谱辐射标准与计量等15条光束线和相应的实验站。国家同步辐射实验室是向国内外用户开放的国家级共用实验室,现有注册用户150余家。
我现在有下迅游 迅达 和 玲珑. 感觉迅达 和 玲珑的VPN模式还行. 就是不知道哪个稳定一点. 其实迅游的高V 和 玲珑一样的 也是30+
1.打开任务管理器2.选择【进程】3.找到netpasd.exe4.结束它的进程5.重新打开 NETPAS
工业探伤用的加速器分为回旋加速器和电子直线加速器 回旋加速器是一种高能X射线源,它可以取代笨重的X射线直线加速器、移动式X射线探伤机和采用放射性同位素γ射线探伤机。主要用于超厚工件的无损检测,可...
在美国,许多大企业甚至积极参与同步辐射加速器建设的投资,或者长年租用光束线开展实验。欧洲的情况比美国差一些,但是也有很多制药、化妆品、食品、建筑、冶金、微电子等行业的大企业申请到这里来做实验,如阿旺第斯制药公司、欧莱雅化妆品公司等。
截至2009年,欧洲同步辐射加速器每年的运行费用是7000万欧元,投资来源是17个欧洲国家、欧盟的一些研究项目经费、以及企业实验投资。每年在加速器上做实验的项目有5000多个,实验室聘请实验室以外、来自世界各地的专家每年两次对申请项目进行评审、筛选。
项目一旦入选,加速器运行费投资国的专家到这里做实验的所有费用,包括国际旅费、在格勒诺贝尔的吃、住、行以及实验费用都由实验室提供;投资国以外国家的专家则仅可以免费在这里做实验。“免费”的前提是,实验结果论文必须公开发表。因此,世界上50多台同步加速器,这里是发表论文最多的地方。企业也可申请在这里做实验,但因为结果是保密的,所以必须付费。
科学家们在这里取得了许多重要成果,如:用同步辐射衍射光对纳米技术、特别是光电子技术发展有潜在应用价值的、物质表面晶体生长过程中产生的纳米级量子阱的体积(基底宽度、高度)的测量;用缩微同步辐射光束研究在常温、常压下合成具有溶水性和极好的韧性及强度的蜘蛛网丝的组成结构;用同步辐射的高亮度光束研究酵母锯蛋白的结晶体结构,以更好地了解导致人类克雅氏病、疯牛病的锯蛋白的原子机理;用同步辐射X成像技术研究雪花的三维多孔结构,以发展预测雪崩的技术;多孔的沸石在工业中应用非常广泛,可用于过滤垃圾、精炼溶剂或清洗剂,石油工业对它能够激发催化反应的特性尤其感兴趣——在其小孔中加入碳水化合物分子,沸石就成为具有选择性的化学反应机器,微电子工业则认为它能够孤立“量子”纳米粒子的能力非常有用,高质量的同步辐射光使科学家能够精确地了解活性区域的位置和运转情况……
欧洲同步加速器是全球三大第三代同步辐射光源中心之一,其他两家是美国的APS和日本的Spring-8。
医用加速器辐射防护及辐射安全管理
医用加速器是生物医学上的一种用来对肿瘤进行放射治疗的粒子加速器装置。带电粒子加速器是用人工方法借助不同形态的电场,将各种不同种类的带电粒子加速到更高能量的电磁装置。要使带电粒子获得能量,就必须有加速电场。依据加速粒子种类的不同,加速电场形态的不同,粒子加速过程所遵循的轨道不同被分为各种类型加速器。医用加速器适应症广泛,可用于头颈、胸腔、腹腔、盆腔、四肢等部位的原发或继发肿瘤,手术后残留的肿瘤
医用加速器机房防辐射施工技术
介绍采用普通混凝土进行医用直线加速器机房的防辐射施工技术。
当带电粒子(通常是电子)垂直注入均匀的恒磁场绕磁力线作圆周运动时,即使粒子的速率恒定,它也具有向心加速度,从而产生电磁辐射。由非相对论性(vc)低能电子发射的,叫回旋加速器辐射,由相对论性(v≈c)高能电子发射的,叫同步加速器辐射。它们首先是在回旋加速器和同步加速器中被观察到的,因而得名。有的文献中将两者统称回旋加速器辐射,苏联文献中常称为磁轫致辐射。
此两种辐射的偏振状态相似,都在垂直于磁场的方向上线偏振,在沿磁场的方向上圆偏振,在斜方向上一般是椭圆偏振(见光的偏振)。
两种辐射的频谱和角分布的特点有很大不同。回旋加速器辐射的谱是由拉莫尔角频率Ω0,及其谐频组成的分立谱(e和m0分别是电子的电荷和静止质量,B为磁感应强度,с为光速)。能量主要集中在基频,谐频成分极弱;辐射的方向性不强。相对论性电子的能量为γm0с2, 其中v是电子速度。 由于相对论效应,随着电子能量的增大,电子的质量m=m0γ增大,拉莫尔角频率的数值减小,并因电子速度上的差异而有所分散,从而使回旋加速器辐射的谱线间隔减小,线宽加大。在极端相对论性条件下,辐射谱变为连续的,这便是同步加速器辐射。与回旋加速器辐射相比,同步加速器辐射具有以下一些不同的特征:
① 存在一个临界角频率(R为粒子轨道半径),在其附近能谱有极大值。ωωc时,辐射功率谱正比于ω时;ωωc时,正比于
(ω/ωc)┩exp(-ω/ωc)。
随着γ 的增大,能谱的极大值向更高级的谐频转移。
② 对于给定的磁场,总辐射功率正比于γ2;对于给定轨道半径,它正比于γ4,即总辐射功率随粒子能量的增大而急剧增强。
③ 辐射的方向性极强,它像探照灯似地分布在以粒子运动方向为轴的极窄角锥内,锥的半角宽度θ~1/γ(见图)。 电子回旋运动产生电磁辐射的最早理论研究要追溯到20世纪初,G.A.肖脱于1912年计算了经典原子模型的辐射。40年代,Д.Д.伊万年科和И.Я.坡密朗丘克以及J.S.施温格曾考虑了这类辐射对设计圆形粒子加速器的重要性。尔后朱洪元(1948)和施温格(1949)发展了有关回旋加速器辐射的理论,这些理论公式已列入标准的教科书。理论计算表明,同步加速器中带电粒子能量U因辐射而产生的损耗率为q为电荷。此式表明,随U的增加极快。此外,对于质量小的电子,这种辐射消耗特别严重(∞m0-4)。这种辐射是高能圆形轨道加速器中最主要的能量损失机制。为了减少它,通常要采用很大的半径R。
同步加速器辐射为人们提供了一种高度准直并可连续调谐的强光光源。特别是在真空紫外和X射线波段,尚无可用的激光器与之匹敌。50年代同步加速器辐射已被广泛研究,60年代前期,美国国家标准局(NBS)的K.科德林、R.P.马登和他们的合作者开始把180MeV的同步加速器当作辐射源用于原子光谱的研究。近年来美国、苏联、日本和西欧许多国家都开展了这方面的工作,用同步加速器或储存环发出的同步加速器辐射来进行光化学、生物学、固体及其表面、材料学、光子散射、非线性光学、X射线全息、X射线显微学、X 射线光刻等多方面的探索和研究。这方面的研究以前多借助于粒子物理学的装置,近年来一批专用的设备正在设计或制造中。
同步加速器辐射是天体物理学中一种重要辐射机制。目前普遍认为,很多具有幂律谱和偏振的非热宇宙射电辐射来源于高能粒子的同步加速器辐射。这类射电源中最著名的例子是为中国《宋史》记载的蟹状星云中心1054年爆发的超新星遗迹。
参考书目
G A.Schott,Electromagnetic Radiation,CambridgeUniv.Press, Cambridge,1912.
D.I.Vanenko and J. Pomeranchuk,Phys. Rev.,Vol.65,p.343,1944.
J. Schwinger,Phys. Rev., Vol 70, p.798,1946.
H. Y. Tzu,Proc. Roy. Soc., A192, P.231,1948.
J. Schwinger,Phys, Rev., Vol. 75, P.1912,1949.
J. D.杰克逊著,朱培豫译:《经典电动力学》,下册,人民教育出版社,北京,1980。(J.D.Jackson,Classicalelectrodynamics, John Wiley & Sons, New York,1976.)
K.codlingand R.P.Madden,J.Appl.Phys.,Vol.36,p.380, 1965.
同步加速器中加速电子的电磁辐射在很宽的波段内产生强的连续谱。伊万诺科和波梅兰丘克以及施温格尔发展了这种同步加速器辐射的理论。这种辐射沿电子轨道的切线方向射出,其角发散等于电子剩余能量与它的总能量E之比。例如,在100MeV时,光束的宽度大约是2°。辐射功率与E成正比。当电子能量增加时,最大值向短波方向位移。同步加速辐射是部分偏振的(偏振度接近85%),电矢量位于电子轨道平面内。按相对单位或绝对单位都可计算同步加速器的辐射。
电子同步加速器主要用于研究光核反应和介子物理等。在40年代就发现,当电子同步加速器中的高能电子速度接近光速时,因相对论效应会产生光辐射——同步辐射。几乎所有的电子同步加速器都兼有同步辐射作用。有的专门用于产生同步辐射,有的国家还建造产生光辐射的“光子工厂”。同步辐射是连续光谱,辐射强度高、准直性好、亮度大,且是天然偏振光,在辐射过程中不产生其他粒子,可实现脉冲发射以及可准确计算光能量,因此是一种理想的标准光源,在原子物理学、表面物理学、分子物理学、化学、生物学、医学及光学标准计量等方面有广泛的应用。