选择特殊符号
选择搜索类型
请输入搜索
热辐射
热交换的基本途径为:传导、对流和辐射。为了有效散热,人们常通过减少热流途径的热阻和加强对流系数来实现,往往忽略了热辐射。LED灯具一般采用自然对流散热,散热器将LED产生的热量快速传递到散热器表面,由于对流系数较低,热量不能及时地散发到周围的空气中,导致表面温度升高,LED的工作环境恶化。提高辐射率可以有效地将散热器表面的热量通过热辐射的形式带走,一般铝制散热器通过阳极氧化来提高表面辐射率,陶瓷材料本身可以具有高辐射率特性,不必进行复杂的后续处理。
辐射机理
陶瓷材料的辐射机理是由随机性振动的非谐振效应的二声子和多声子产生。高辐射陶瓷材料如碳化硅、金属氧化物、硼化物等均存在极强的红外激活极性振动,这些极性振动由于具有极强的非谐效应,其双频和频区的吸收系数,一般具有100~100cm-1数量级,相当于中等强度吸收区在这个区域剩余反射带的较低反射率,因此,有利于形成一个较平坦的强辐射带。
一般来说,具有高热辐射效率的辐射带,大致是从强共振波长延伸到短波整个二声子组合和频区域,包括部分多声子组合区域,这是多数高辐射陶瓷材料辐射 带的共同特点,可以说,强辐射带主要源于该波段的二声子组合辐射。除少数例外,一般辐射陶瓷的辐射带集中在大于5m的二声子、三声子区。因此,对于红外辐 射陶瓷而言,1~5m波段的辐射主要来自于自由载流子的带内跃迁或电子从杂质能级到导带的直接跃迁,大于5m波段的辐射主要归于二声子组合辐射。
刘维良、骆素铭对常温陶瓷红外辐射做了研究,测试的陶瓷样品红外辐射率约0.82~0.94,对不同表面质量的远红外陶瓷釉面也进行了测试,辐射率约0.6~0.88,并从陶瓷断口SEM照片中得出远红外陶瓷粉在釉中添加量为10wt%时的辐射性能、釉面质量、颜色和成本较佳,其辐射率达到了 0.83,其他性能均达到国家日用瓷标准要求。崔万秋、吴春芸对低温远红外陶瓷块状样品进行了测试,红外辐射率为0.78~0.94。李红涛、刘建学研究发现,常温远红外陶瓷辐射率一般可达0.85,国外Enecoat釉涂料最高辐射率可达0.93~0.94。众多研究均表明,陶瓷材料或釉面本身具有很高的红外辐射率,是其替代传统铝制散热器的一大重要参数。
力学特性
陶瓷材料是工程材料中刚度最好、硬度最高的材料,其硬度大多在1500HV以上。陶瓷的抗压强度较高,但抗拉强度较低,塑性和韧性很差。
热特性
陶瓷材料一般具有高的熔点(大多在2000℃以上),且在高温下具有极好的化学稳定性;陶瓷的导热性低于金属材料,陶瓷还是良好的隔热材料。同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性。
电特性
大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压(1kV~110kV)的绝缘器件。铁电陶瓷(钛酸钡BaTiO3)具有较高的介电常数,可用于制作电容器,铁电陶瓷在外电场的作用下,还能改变形状,将电能转换为机械能(具有压电材料的特性),可用作扩音机、电唱机、超声波仪、声纳、医疗用声谱仪等。少数陶瓷还具有半导体的特性,可作整流器。
化学特性
陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力。
光学特性
陶瓷材料还有独特的光学性能,可用作固体激光器材料、光导纤维材料、光储存器等,透明陶瓷可用于高压钠灯管等。磁性陶瓷(铁氧体如:MgFe2O4、CuFe2O4、Fe3O4)在录音磁带、唱片、变压器铁芯、大型计算机记忆元件方面的应用有着广泛的前途。
采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟。这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等。
采用高纯度人工合成的原料,利用精密控制工艺成形烧结制成,一般具有某些特殊性能,以适应各种需要。根据其主要成分,有氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、金属陶瓷等;特种陶瓷具有特殊的力学、光、声、电、磁、热等性能。本节主要介绍特种陶瓷。
特种材料分类
根据用途不同,特种陶瓷材料可分为结构陶瓷、工具陶瓷、功能陶瓷。
结构陶瓷
氧化铝陶瓷主要组成物为Al2O3,一般含量大于45%。氧化铝陶瓷具有各种优良的性能。耐高温,一般可要1600℃长期使用,耐腐蚀,高强度,其强度为普通陶瓷的2~3倍,高者可达5~6倍。其缺点是脆性大,不能接受突然的环境温度变化。用途极为广泛,可用作坩埚、发动机火花塞、高温耐火材料、热电偶套管、密封环等,也可作刀具和模具。
氮化硅陶瓷主要组成物是Si3N4,这是一种高温强度高、高硬度、耐磨、耐腐蚀并能自润滑的高温陶瓷,线膨胀系数在各种陶瓷中最小,使用温度高达1400℃,具有极好的耐腐蚀性,除氢氟酸外,能耐其它各种酸的腐蚀,并能耐碱、各种金属的腐蚀,并具有优良的电绝缘性和耐辐射性。可用作高温轴承、在腐蚀介质中使用的密封环、热电偶套管、也可用作金属切削刀具。
碳化硅陶瓷主要组成物是SiC,这是一种高强度、高硬度的耐高温陶瓷,在1200℃~1400℃使用仍能保持高的抗弯强度,是目前高温强度最高的陶瓷,碳化硅陶瓷还具有良好的导热性、抗氧化性、导电性和高的冲击韧度。是良好的高温结构材料,可用于火箭尾喷管喷嘴、热电偶套管、炉管等高温下工作的部件;利用它的导热性可制作高温下的热交换器材料;利用它的高硬度和耐磨性制作砂轮、磨料等。
六方氮化硼陶瓷主要成分为BN,晶体结构为六方晶系,六方氮化硼的结构和性能与石墨相似,故有"白石墨"之称,硬度较低,可以进行切削加工具有自润滑性,可制成自润滑高温轴承、玻璃成形模具等。
工具陶瓷
硬质合金主要成分为碳化物和粘结剂,碳化物主要有WC、TiC、TaC、NbC、VC等,粘结剂主要为钴(Co)。硬质合金与工具钢相比,硬度高(高达87~91HRA),热硬性好(1000℃左右耐磨性优良),用作刀具时,切削速度比高速钢提高4~7倍,寿命提高5~8倍,其缺点是硬度太高、性脆,很难被机械加工,因此常制成刀片并镶焊在刀杆上使用,硬质合金主要用于机械加工刀具;各种模具,包括拉伸模、拉拔模、冷镦模;矿山工具、地质和石油开采用各种钻头等。
金刚石天然金刚石(钻石)作为名贵的装饰品,而合成金刚石在工业上广泛应用,金刚石是自然界最硬的材料,还具备极高的弹性模量;金刚石的导热率是已知材料中最高的;金刚石的绝缘性能很好。金刚石可用作钻头、刀具、磨具、拉丝模、修整工具;金刚石工具进行超精密加工,可达到镜面光洁度。但金刚石刀具的热稳定性差,与铁族元素的亲和力大,故不能用于加工铁、镍基合金,而主要加工非铁金属和非金属,广泛用于陶瓷、玻璃、石料、混凝土、宝石、玛瑙等的加工。
立方氮化硼(CBN)具有立方晶体结构,其硬度高,仅次于金刚石,具热稳定性和化学稳定性比金刚石好,可用于淬火钢、耐磨铸铁、热喷涂材料和镍等难加工材料的切削加工。可制成刀具、磨具、拉丝模等
其它工具陶瓷尚有氧化铝、氧化锆、氮化硅等陶瓷,但从综合性能及工程应用均不及上述三种工具陶瓷。
功能陶瓷
功能陶瓷通常具的特殊的物理性能,涉及的领域比较多,常用功能陶瓷的特性及应用见表。
常用功能陶瓷
种类 | 性能特征 | 主要组成 | 用途 |
介电陶瓷 | 绝缘性 | Al2O3、Mg2SiO4 | 集成电路基板 |
热电性 | PbTiO3、BaTiO3 | 热敏电阻 | |
压电性 | PbTiO3、LiNbO3 | 振荡器 | |
强介电性 | BaTiO3 | 电容器 | |
光学陶瓷 | 荧光、发光性 | Al2O3CrNd玻璃 | 激光 |
红外透过性 | CaAs、CdTe | 红外线窗口 | |
高透明度 | SiO2 | 光导纤维 | |
电发色效应 | WO3 | 显示器 | |
磁性陶瓷 | 软磁性 | ZnFe2O、γ-Fe2O3 | 磁带、各种高频磁心 |
硬磁性 | SrO.6 Fe2O3 | 电声器件、仪表及控制器件的磁芯 | |
半导体陶瓷 | 光电效应 | CdS、Ca2Sx | 太阳电池 |
阻抗温度变化效应 | VO2、NiO | 温度传感器 | |
热电子放射效应 | LaB6、BaO | 热阴极 |
精陶瓷
陶瓷材料中已崛起了精细陶瓷,它以抗高温、超强度、多功能等优良性能在新材料世界独领风骚。精细陶瓷是指以精制的高纯度人工合成的无机化合物为原料,采用精密控制工艺烧结的高性能陶瓷,因此又称先进陶瓷或新型陶瓷。精细陶瓷有许多种,它们大致可分成三类。
结构陶瓷
这种陶瓷主要用于制作结构零件。机械工业中的一些密封件、轴承、刀具、球阀、缸套等都是频繁经受摩擦而易磨损的零件,用金属和合金制造有时也是使用不了多久就会损坏,而先进的结构陶瓷零件就能经受住这种"磨难"。
电子陶瓷
指用来生产电子元器件和电子系统结构零部件的功能性陶瓷。这些陶瓷除了具有高硬度等力学性能外,对周围环境的变化能"无动于衷",即具有极好的稳定性,这对电子元件是很重要的性能,另外就是能耐高温。
生物陶瓷
生物陶瓷是用于制造人体"骨骼一肌肉"系统,以修复或替换人体器官或组织的一种陶瓷材料。
精细陶瓷是新型材料特别值中得注意的一种,它有广阔的发展前途。这种具有优良性能的精细陶瓷,有可能在很大的范围内代替钢铁以及其他金属而得到广泛应用,达到节约能源、提高效率、降低成本的目的;精细陶瓷和高分子合成材料相结合.可以使交通运输工具轻量化、小型化和高效化。
精陶材料将成为名副其实的耐高温的高强度材料,从而可用作包括飞机发动机在内的各种热机材料、燃料电池发电部件材料、核聚变反应堆护壁材料、无公害的外燃式发动机材料等。精细陶瓷与高性能分子材料、新金属材料、复合材料并列为四大新材料。有些科学家预言.由于精细陶瓷的出现,人类将从钢铁时代重新进入陶瓷时代
铁中有许多具有两个异性磁极的原磁体,在无外磁场作用时,这些原磁体排列紊乱,它们的磁性相互抵消,对外不显示磁性。当把铁靠近磁铁时,这些原磁体在磁铁的作用下,整齐地排列起来,使靠近磁铁的一端具有与磁铁...
陶瓷的种类很多,广义的陶瓷包含玻璃、水泥在内的绝大部分无机非金属材料,狭义的陶瓷按照用途分类又有日用陶瓷、建筑陶瓷、电子陶瓷等
超级陶瓷材料好。按原料组成可分为:氧化铁陶瓷、氧化铝陶瓷、氧化钛陶瓷、氧化硅陶瓷、碳化硅陶瓷和金属陶瓷等。特种陶瓷的应用范围从电容器、滤波器、点火器、保温材料、医疗器械和通讯元件等方向扩展到航天、卫星...
陶瓷材料辐射原理
陶瓷材料的热辐射机理 简介 我们知道,热交换的基本途径为:传导、对流和辐射。为了有效散热,人们常通 过减少热流途径的热阻和加强对流系数来实现,往往忽略了热辐射。 LED灯具一 般采用自然对流散热, 散热器将 LED产生的热量快速传递到散热器表面, 由于对 流系数较低,热量不能及时地散发到周围的空气中,导致表面温度升高, LED的 工作环境恶化。提高辐射率可以有效地将散热器表面的热量通过热辐射的形式带 走,一般铝制散热器通过阳极氧化来提高表面辐射率,陶瓷材料本身可以具有 高辐射率特性,不必进行复杂的后续处理。 辐射机理 陶瓷材料的辐射机理是由随机性振动的非谐振效应的二声子和多声子产生。 高辐 射陶瓷材料如 碳化硅、金属氧化物、硼化物等均存在极强的红外激活极性振动, 这些极性振动由于具有极强的非谐效应,其双频和频区的吸收系数,一般具有 100~100cm-1数量级,相当于中等强度吸收区在这个区
陶瓷材料论文
透明陶瓷的研究现状与发展展望 摘要 :透明陶瓷以其优异的综合性能已成为一种新型的、备受瞩目的功能材料。 综述了透明陶瓷的分类, 探讨了透明陶瓷的制备工艺, 并展望了透明陶的应用前 景。 关键词 : 透明 陶瓷 透光性 制备工艺 应用 前言 :自 1962 年 R.L.Coble 首次报导成功地制备了透明氧化铝陶瓷材料以来 , 为陶瓷材料开辟了新的应用领域。这种材料不仅具有较好的透明性 ,且耐腐蚀 , 能在高温高压下工作 ,还有许多其他材料无可比拟的性质 ,如强度高、介电性能优 良、低电导率、高热导性等 ,所以逐渐在照明技术、光学、特种仪器制造、无线 电子技术及高温技术等领域获得日益广泛的应用 〔1〕。近 38年来 ,世界上许多国 家 ,尤其是美国、日本、英国、俄罗斯、法国等对透明陶瓷材料作了大量的研究 工作 ,先后开发出了 Al2O3、Y2O3、MgO、CaO、TiO2、ThO2、ZrO2
《陶瓷材料概论》较全面地对陶瓷材料涉及的各种基本问题以及对先进陶瓷材料的诸多研究方面作了介绍,共分16章,第1~4章主要介绍陶瓷材料的结构特性,第5~8章介绍陶瓷材料的热力学问题和制备方法,第9~16章在穿插叙述陶瓷材料物理性能的同时,介绍两类重要的陶瓷:工程结构陶瓷和功能陶瓷材料。《陶瓷材料概论》力求从物理、化学和晶体学的基本问题出发,紧扣陶瓷材料的结构特性与物理性能的关系,以理解陶瓷结构多变性及结构变化对提升材料物理性能的重要作用。
《陶瓷材料概论》适合材料及相关专业的本科性、研究生和从事材料研究的科学技术人员系统学习或参考使用。
生物材料 工业的全球年营业额约为120 亿美元,其中硬组织的修复和替换占了23 亿[8],据不完全统计,在世界范围内,已有50 万例全髓置换,并且正以每年近10万例的数目增长。
生物陶瓷材料虽然已成功地应用到人类硬组织上,但仍存在各种问题,为此对生物陶瓷材料的研究日益加强。
生物活性陶瓷中应用最多的是羟基磷灰石(hydroxyapatite,简称HA 或HAP)。羟基磷灰石是人体和动物骨骼的主要无机成分,对于羟基磷灰石材料的研究成了国内外生物医用材料领域的主要课题之一。羟基磷灰石具有良好的生物相容性,植入体内不仅安全、无毒,还具有一定的骨传导性。Poter 等人发现不同百分比的掺Si 的HA 的溶解速率是1.5wt%Si-HA>0.8wt%Si-HA>纯HA[9],这表明Si 的引入可加速HA 的溶解,同时HA界面增加的Ca、P、Si 离子可加速骨磷灰石的沉淀及陶瓷表面的骨的形成,从而增加了HA 的生物活性。MarkT 等人评估了几种HA 的溶解性和降解速率后发现,经过烧结的HA 由于高的结晶性以及没有可置换的离子,所以其溶解度较其它HA 更低[9]。这表明结晶是影响HA降解的一个因素,且高结晶的HA 比贫晶的HA 更稳定而不易降解。他们同时发现,颗粒越大,其溶解度和降解率越低。
就羟基磷灰石生物陶瓷来说,从致密向多孔发展是一个引人瞩目的课题[10]。针对HA 生物陶瓷力学性能差的特点,人们首先进行的是致密HAP 陶瓷的研究。致密HA 的表面显气孔率较小,经电镜观察孔径为80μm,有较好的机械性能。致密HA 具有一定的可加工生物陶瓷材料及其发展动态性,在临床使用中极为方便,但因其植入人体内后,只能在表面形成骨质,缺乏诱导骨形成的能力,仅可作为骨形成的支架,主要用于人工齿根种植体。
近10 年来,多孔羟基磷灰石陶瓷受到重视,其宏观多孔生物材料的兴起,更加引起了材料工作者的极大兴趣,取得了相应的科研成果[11-13]。如果植入骨基质的替换物为骨单位提供支持框架,则骨单位可以此为依托生长,骨缺陷可以重建和修复,如果为骨缺陷提供骨基质替换物在孔隙结构上与骨单位及脉管连接方式相一致,则植入材料会促进骨组织的重建。因此,植入体( 生物陶瓷) 应当模仿骨结构,在充分研究骨结构的基础上,应加快设计生物陶瓷种植体的形状及结构。
对于多孔生物陶瓷种植体而言,孔径、气孔率及孔的内部连通性是骨长入方式和数量的决定因素。孔隙的大小应满足骨单位和骨细胞生长所需的空间,当种植体内部连通气孔和孔径为5-40μm 时允许纤维组织长入;孔径为40-100μm 时允许非矿化的骨样组织长入;孔径大于150μm 时能为骨组织的长入提供理想场所;孔径大于200μm 是骨传导的基本要求;孔径为200-400μm 最有利于新骨生长。
多孔HA 具有诱导骨形成的作用和能力,研究表明,多孔HA 植入人体后能使界面的软硬组织都长入孔隙内,形成纤维组织和新生骨组织交叉结合状态,能保持正常的代谢关系。多孔HA 生物陶瓷因其强度较低,只能用于一些强度相对低的部位,在口腔医疗中主要用于颌骨的置换及修补,在外科医疗主要用于整容。
广泛应用的生物降解陶瓷为β- 磷酸三钙( 简称β-TCP),属三方晶系,钙磷原子比为1.5,是磷酸钙的一种高温相。β-TCP 的最大优势就是生物相容性好,植入机体后与骨直接融合,无任何局部炎性反应及全身毒副作用。其不足是高切口敏感性导致的低疲劳强度,较高刚性和脆性使其难以加工成型或固定钻孔。
基于仿生原理,制备类似于自然组织的组成、结构和性质的理想生物陶瓷,应该是生物陶瓷的一个发展方向。磷酸钙盐生物陶瓷人工骨,虽然与骨盐的组成相同,但不同部位的骨性质是不尽相同的,为此组成和结构类似于骨骼连续变化的多孔磷酸钙陶瓷的研究是正在进行的非常有价值的课题。
对于可生物降解的磷酸钙生物陶瓷而言,磷酸钙陶瓷在体内从无生命到有生命的转变过程,即无机物的钙磷是如何转变成为生物体内的有机钙磷,其中是否存在一个晶型转变或晶型转变的过程是如何进行的;材料降解后其产物在体内的分布和代谢途径以及各分支的量的关系等等也应引起材料工作者的高度重视。
钙磷比在决定体内溶解性和吸收趋势上起着重要作用,所以和HA 相比,TCP 更易于在体内溶解,其溶解度约比HA 高10-20 倍。β-TCP 的降解速率与其表面构造、结晶类型、孔隙率及植入动物的不同有关。例如,随表面积增大,结晶度降低、晶体结晶完整性下降、晶粒减小以及CO32- 、F-、Mg2 等离子取代而使降解加快。为此控制β-TCP 的微观结构及组成,可以制备出不同降解速度的材料。
Jorg Handschel 等人研究发现在无负重骨处没有直接和TCP 相连的骨,同样在界面处也没有造骨细胞,而这部分是由于TCP 降解后导致介质酸化所造成的[9]。这同样也证明了介质的pH 值不会随所使用的TCP 颗粒的浓度而改变,它取决于造骨细胞和颗粒直接的相互作用,包括造骨细胞功能的减弱。Inone 等人研究发现,TCP 从
第三周起开始降解,同时从第三周起骨开始形成,他们还比较了空隙率分别为50%、60%、75% 的TCP 的性能,发现75% 的TCP 是较好的骨替代物,但机械强度不高,只能用于无负重处或与固定装置结合[9]。此外,用Si 稳定TCP 可以增加其骨传导性和骨组织的修复。
磷酸钙陶瓷的主要缺点是其脆性。致密磷酸钙陶瓷可以通过添加增强相提高它的断裂韧性,多孔磷酸钙陶瓷虽然可被新生骨长入而极大增强,但是在再建骨完全形成之前,为及早代行其功能,也必须对它进行增韧补强。磷酸钙陶瓷基复合材料,已经成为磷酸钙生物陶瓷的发展方向之一[14]。
复合生物陶瓷是指生物用复相陶瓷的总称。由多种组分构成,含有多相的生物用陶瓷材料。
生物陶瓷的强度是一个非常重要的指标,为了提高生物陶瓷的强度,许多材料工作者进行了深入的探讨
Ivanchenko 等人[9] 用硅硼酸钠玻璃来增强HA,当玻璃相为59%、烧结温度小于1000℃、孔隙率为33% 时,得到HA 的机械强度为47MPa。Towler 运用纳米ZrO2在低温下烧结制备了高致密度的HA-ZrO2 复合生物陶瓷。该技术由于使用了纳米ZrO2,故降低了烧结温度。因HA 分解常发生在烧结过程中,但在1200℃烧结时,因烧结温度较低,故避免了HA 的分解,使主晶相仍为HA,且复合材料的强度高于纯HA[15]。黄传勇等[16] 采用化学共沉淀法制备了羟基磷灰石和二氧化锆超细粉,并以此为原料,通过不同材料的优化组合,用烧结法制备了HA-ZrO2 二元体系复合生物陶瓷材料,其抗折强度达到120MPa, 断裂韧性值为l.74MPa·m-1/2, 几乎为纯HA的两倍,接近骨组织(致密骨的抗折强度为160MPa,断裂韧性值为2.2 MPa·m-1/2)。
研究结果表明,复合生物陶瓷材料具有较好的力学性能、化学稳定性和生物相容性,是一种很有应用前景的复合生物陶瓷材料[13,22,23]。现在国外已制备出含有ZrO2 的纳米羟基磷灰石复合材料,其强度和韧性等综合性能可达到甚至超过致密骨骼的相应性能。另,通过调节ZrO2 与HA 含量,可使该纳米复合人工骨材料具有优良的生物相容性。Silva 等[17] 研究了机体HA/ZrO2 复合生物陶瓷材料的生物学反应,发现该材料的相容性符合植入材料的要求。
Kim 等[18] 采用多孔的ZrO2 骨支架,表面采用羟基磷灰石涂层,在二氧化锆和羟基磷灰石之间喷涂氟磷灰石(氟磷灰石在高温下比较稳定,可阻止羟磷灰石与二氧化锆的反应。因为羟基磷灰石和二氧化锆的反应不仅使材料的机械性能降低,而且会使材料的生物相容性降低),制备出了符合要求的生物陶瓷材料。Kim 等[19] 采用在二氧化锆和羟基磷灰石复合粉体间加入氟化钙,然后烧结成型制成复合生物陶瓷材料。研究发现氟化钙可以有效地阻止两者反应,可获得良好的HA/ZrO2 复合生物陶瓷材料。
Li 等[20] 用SPS 方法在高压下快速烧结制备HA/ZrO2 复合生物陶瓷材料,减少了两者之间的反应。而Lee 等[21] 研究的结果显示,作为涂层HA/ZrO2 材料的生物相容性比HA 要差,没有观察到HA/ZrO2 与骨结合。生物相容性由于ZrO2 的加入受到了影响,这可能是由于喷涂的工艺使两者发生反应而导致的。为此,为了既考虑要增强材料的力学性能,而又不影响材料的生物相容性,就必须阻止ZrO2 与HA 反应。
在诸多生物骨科材料中,生物陶瓷涂层材料由于将金属( 或合金) 基材优良的机械性能和生物陶瓷涂层良好的生物学性能结合在一起,成为临床上广泛应用的生物骨科材料之一[24]。
作为生物陶瓷涂层材料的基体一般要求为具有高强度、高韧性、低密度的金属及其合金,如不锈钢、钛及合金、钴铬钼合金、钴铬合金等,其中钛及其合金应用最为广泛。制备生物陶瓷涂层的方法主要有:热喷涂、物理气相沉积、化学气相沉积、溶胶- 凝胶法、电化学、水热反应、玻璃粘附烧结和高分子复合树脂粘结剂法等。此外,还有金属表面改性,如氮化、碳化以及熔烧、电镀等工艺技术等。
近几年日本的T.kokubo 开展了用化学方法( 如用NaOH 溶液) 处理纯钛的研究,通过处理使其表面活化,经模拟体液(SBF) 浸泡获得表面钙磷涂层,其结合强度较高。活化后的纯钛表面生成了TiO2 凝胶,其具有诱导钙磷沉积的能力,即使在表面诱导沉积钙磷层溶解后,露出的TiO2 基体仍具有骨骼结合能力。此方法是否适用于钛合金还有待于进一步的研究,因为化学处理可能造成有害元素钒(V) 的活化,加速钒离子从钛合金表面溶出。其可能的方法是在钛合金表面镀钛,或者将钛合金表面净化,去除表层区域的钒元素。
涂层的厚度对涂层与骨骼的结合有一定的影响[25]。一方面需要有一定的厚度,以保证涂层在体液作用下存在足够的时间,促进植入物与骨骼组织的结合;另一方面,随着涂层厚度的增加,涂层残余应力增大,涂层材料本身的性质也容易表现出来,植入生物体内后,将影响材料与骨骼的结合。近年来的研究表明,理想的涂层厚度在50μm 左右(30 ~90μm)。在涂层厚度一定的前提下,涂层结晶度和相组成是决定涂层在体液作用下保留时间的重要因素。高结晶度的涂层(>90%),比较稳定,溶解较少;较低的结晶度(60%~70%) 则容易发生溶解及降解。一般认为,涂层的结晶度与涂层和基体的结合状况成反比,具有较低结晶度的涂层有着较好的结合力。涂层晶粒越小,涂层与基体的润湿性越好,涂层与基体的结合性就会越牢固。
人造羟基磷灰石虽然化学组成与生物组织很相似,但其结晶程度和结构稳定性要比自然骨骼中的羟基磷灰石晶体高,因此植入生物体后长期不易降解,始终作为一种异质体残留在骨骼缺损组织中。在涂层中掺人少量固溶杂质元素,可以改善材料生物活性和生物降解率。陈德敏等[26] 采用液相反应法,即在氢氧化锶和氢氧化钙悬浊液中不断滴入稀硫酸,通过控制pH 值反应合成掺锶羟基磷灰石固溶体。实验结果表明,用锶元素掺杂于羟基磷灰石结构中,形成的掺锶羟基磷灰石比纯的羟基磷灰石具有更好的骨骼缺损修复能力。掺杂还可以增强生物陶瓷涂层的结构稳定性。张亚平等[27] 在钛合金表面用激光涂覆生物陶瓷涂层时,在一定配比的CaHPO4·2H2O和CaCO3 中掺人少量Y2O3 粉末, 发现少量Y2O3 有利于激光化学反应合成HA,并增加其结构稳定性,使涂层组织成为具有一定择优取向的细小的不规则的多边形晶体。其原理是:激光涂覆时,化学位与浓度梯度是熔体内传质扩散的推动力,而少量Y2O3 能使上述两种梯度差增大,促进HA 的生成。
1933 年Rock 首先建议将Al2O3 陶瓷用于临床;1963 年由Smith 用于矫形外科[28]。70 年代至80 年代中期,世界许多国家如美国、日本、瑞士等国家,都对氧化物陶瓷,特别是氧化铝生物陶瓷进行了广泛的研究和应用。由于氧化铝陶瓷植入人体后表面生成极薄的纤维膜,界面无化学反应,多用于全臀复位修复术及股骨和髋骨部连接。通过火焰熔融法制造的单晶氧化铝,强度很高,耐磨性好,可精细加工,制成人工牙根、骨折固定器等。多晶氧化铝,即刚玉,强度大,用于制作双杯式人工髋关节、人工骨、人工牙根和关节。
Boutint 在1972 年首先报道了用氧化铝陶瓷制作的人体髋关节在生理和摩擦学方面的优越性极其在临床上的应用[23]。高纯氧化铝陶瓷化学性能稳定,生物相容性好,呈生物惰性;由于其硬度高,耐磨性能好,因此磨损率比其它材料至少小1 ~2 个数量级[29]。
单晶氧化铝陶瓷的机械性能更优于多晶氧化铝,适用于负重大、耐磨要求高的部位,但其不足之处在于加工困难。中国陶瓷在实验室研究水准上完全可达到ISO标准,但用于临床仍有一定差距,材料未达到ISO 标准,另外氧化铝属脆性材料,冲击韧性较低;弹性模量和骨相差大,陶瓷的高弹性模量,可能引起骨组织的应力,从而引起骨组织的萎缩和关节松动,在使用过程中,常出现脆性破坏和骨损伤。近年来,国外有关学者在氧化铝陶瓷增韧方面作了大量的工作,诸如改变材料的显微结构;利用ZrO2 相变增韧或微裂纹增韧,以及在瓷体中人为造成裂纹扩散的障碍等,取得了显著的效果。
生物陶瓷(Bioceramies)是指用作特定的生物或生理功能的一类陶瓷材料,即直接用于人体或与人体相关的生物、医用、生物化学等的陶瓷材料。广义讲,凡属生物工程的陶瓷材料统称为生物陶瓷。
做为生物陶瓷材料,需具备如下条件:生物相容性;力学相容性;与生物组织有优异的亲和性;抗血栓;灭菌性并具有很好的物理、化学稳定性。生物陶瓷材料可分为生物惰性陶瓷、生物活性陶瓷和生物复合材料三类。生物陶瓷材料因其与人的生活密切相关,故一直倍受材
料科学工作者的重视。