选择特殊符号
选择搜索类型
请输入搜索
连续纤维补强陶瓷基复合材料(Continuous FiberReinforced Ceramic Matrix Composites,简称CFCC)是将耐高温的纤维植入陶瓷基体中形成的一种高性能复合材料。由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用[1~3]。20世纪70年代初,J Aveston[2]在连续纤维增强聚合物基复合材料和纤维增强金属基复合材料研究基础上,首次提出纤维增强陶瓷基复合材料的概念,为高性能陶瓷材料的研究与开发开辟了一个方向。随着纤维制备技术和其它相关技术的进步,人们逐步开发出制备这类材料的有效方法,使得纤维增强陶瓷基复合材料的制备技术日渐成熟。20多年来,世界各国特别是欧美以及日本等对纤维增强陶瓷基复合材料的制备工艺和增强理论进行了大量的研究,取得了许多重要的成果,有的已经达到实用化水平。如法国生产的"Cerasep"可作为"Rafale"战斗机的喷气发动机和"Hermes"航天飞机的部件和内燃机的部件[4];SiO2纤维增强SiO2复合材料已用作"哥伦比亚号"和"挑战者号"航天飞机的隔热瓦[5]。由于纤维增强陶瓷基复合材料有着优异的高温性能、高韧性、高比强、高比模以及热稳定性好等优点,能有效地克服对裂纹和热震的敏感性[6~7],因此,在代写论文重复使用的热防护领域有着重要的应用和广泛的市场
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。
Ceramic Matrix Composite,简称CMC
陶瓷基复合材料是100元,蛮不错的,做工特别精良,使用手感也不错,锋利,抗压力强,抗击力很好,耐用,实用。后期保养方便简单。陶瓷刀拥有无可比拟的锋利刀锋,能削出如纸一样薄的肉片。精密陶瓷有超强的硬度及...
陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。可采用高强度、高弹性的纤维与基体复合。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优...
陶瓷复合材料是由陶瓷相和含有2至98%碳和/或氮化硼作为主要组分的相组成的,并且其平均颗粒大小为100nm或以下,其中热膨胀系数在2.0至9.0×10-6/℃,在表面抛光后的表面粗糙度为0.05微米或...
陶瓷基复合材料
精选陶瓷基复合材料1资料
精选陶瓷基复合材料1资料
陶瓷基复合材料论文资料
陶瓷基复合材料在航天领域的应用 概念:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复 合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶 瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能, 而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断 裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提 高陶瓷韧性和可靠性的一个有效的方法。 纤维能阻止裂纹的扩展, 从 而得到有优良韧性的纤维增强陶瓷基复合材料。 陶瓷基复合材 料具有优异的耐高温性能, 主要用作高温及耐磨制品。 其最高使用温 度主要取决于基体特征。 一、陶瓷基复合材料增强体 用于复合材料的增强体品种很多, 根据复合材料的性能要求, 主 要分为以下几种 1.1纤维类增强体 纤维类增强体有连续长纤维和短纤维。 连续长纤维的连续长度均 超过数百。纤维性能有方向性, 一般沿轴向均有很高的强度和弹性模
《陶瓷基复合材料的连接方法》为了克服专利背景中相关技术粘结降低连接件的可靠性;不适合大型复杂薄壁件的连接以及陶瓷基复合材料螺栓连接加工成本高;对陶瓷基复合材料的结构强度损伤较大;螺栓改变陶瓷基复合材料构件的表面形状等缺点,该发明提供一种复合材料的连接方法,这种类似金属铆接的陶瓷基复合材料连接方法,将粘结和紧固有机结合,充分发挥各自的优点。
《陶瓷基复合材料的连接方法》解决其技术问题所釆用的技术方案是:一种陶瓷基复合材料的连接方法,采用下述方法步骤:
(1)用碳纤维编制三维预制体,用平板石墨模具对碳纤维三维预制体进行定型,经过沉积热解炭界面层和碳化硅基体,完成三维C/SiC复合材料制备,用三维C/SiC复合材料加工铆钉;
(2)将需要连接的构件A与构件B组合配钻加工铆钉孔,铆钉孔为沿构件A与构件B的连接面对称向外的锥孔,锥度为10~20度;
(3)将铆钉用紧配合的方法与构件AB组装在一起;
(4)釆用化学气相渗透的方法在铆钉孔与铆钉之间沉积碳化硅;
(5)对铆接部位进行加工和修整,除掉铆钉的多余部分,使铆钉与构件A与构件B的外表面平齐;
(6)釆用化学气相沉积的方法在构件A与构件B的外表面制备碳化硅涂层,对铆接部位进行覆盖和保护。
所述的陶瓷基复合材料铆钉为沿纤维轴向夹角0~45度方向加工而成,铆钉的直径为Φ2~6毫米。
截至2004年7月27日,与相关技术相比,《陶瓷基复合材料的连接方法》的有益效果是:由于釆用了粘结和紧固相结合的陶瓷基复合材料连接方法,连接强度和可靠性高,使用温度不受影响;将陶瓷基复合材料的制造过程与连接过程融为一体,不需要增加新的连接设备与连接工艺,同时陶瓷基复合材料铆钉的加工成本远比陶瓷基复合材料螺栓低。因此,该发明工艺简单,连接成本低;用化学气相沉积的方法制备表面涂层,将铆接部位覆盖,使构件表面光滑过渡。因此,该发明对连接件的结构强度影响小且不改变构件表面形状;连接过程全部使用陶瓷基复合材料制造设备,在制造设备许可的范围内铆接的尺寸不受限制。因此,该发明对连接件的尺寸和形状限制小,适用于大型复杂薄壁构件的连接。
纤维增强陶瓷基复合材料,即在陶瓷基体中添加纤维来增加强度和韧性的复合材料。
《陶瓷基复合材料的连接方法》涉及一种复合材料的连接方法,特别是碳基和碳化硅陶瓷基复合材料的连接方法,主要适用于大型复杂薄壁和尺寸精度要求高的陶瓷基复合材料构件的连接。