选择特殊符号
选择搜索类型
请输入搜索
①一次冻胀,指分凝成冰面(见冻融时水分迁移)与冻结面一致时产生的冻胀,在自然界不多见。
②二次冻胀,指分凝成冰面与冻结面之间相隔一个冻结缘时产生的冻胀,在自然界最普遍。
③三次冻胀,由冻土中水分重新分布引起的冻胀,在自然界普遍存在。
土中水冻结引起的土体膨胀现象。在天然情况下,土的不均匀冻胀可形成冻胀丘(见冰缘地貌)。土的冻胀产生极大的冻胀力。冻胀具有不均匀性,使建造物产生不均匀变形,这种不均匀变形一旦超过允许值,建造物就被破坏。
主要取决于土、水、温和力 4个因素。
①土的条件。包括土的粒度成分、矿物成分、化学成分和密度等,其中最主要的是土的粒度成分。大的冻胀通常发生在细粒土中,其中粉质亚粘土和粉质亚砂土中的水分迁移最为强烈,因而冻胀性最强。粘土由于土粒间孔隙太小,水分迁移有很大阻力,冻胀性较小。砂砾,特别是粗砂和砾石,由于颗粒粗,表面能小,冻结时一般不产生水分迁移,所以不具冻胀性。细砂冻结时,水产生反向(即向未冻土方向)转移,出现排水现象。也不具冻胀性。在天然情况下,冻土粒度常是粗细混杂的,当粉粘粒(粒径小于0.05毫米)含量高于5%时,便具有冻胀性。冻土的矿物成分对冻胀性也有影响:在常见的粘土矿物中,高岭土的冻胀量最大,水云母次之,蒙脱石最小。冻土中的盐分也影响冻胀:通常在冻土中加入可溶盐可削弱,以致消除土的冻胀。土的密度对冻胀的影响较为复杂。
②水的条件。并非所有含水的土冻结时都会产生冻胀。只有当土中的水分超过某一界限值后,土的冻结才会产生冻胀。这个界限即为该土的起始冻胀含水量。当土体含水量小于其起始冻胀含水量时,土中有足够的孔隙容纳未冻水和冰,冰结时没有冻胀。按有无水分的补给,划分为两种冻胀:封闭系统冻胀,在冻结过程中没有外来水分补给,冻胀形成的冰层较薄,冻胀也较小;开敞系统冻胀,在冻结过程中有外来水分补给,冻胀形成的冰层厚,产生强烈的冻胀。在天然情况下,水分补给主要来源于大气降水和地下水。秋末降水多,冬季土的冻胀量就大;地下水位越浅,土的冻胀量也越大。
③温度条件。土的冻胀开始于某一温度,称为起始冻胀温度,其值略低于该土的起始冻结温度。当温度低于起始冻胀温度时,由于冻土中未冻水继续冻结成冰,土体仍有冻胀。当温度继续降低至某一值时,在封闭系统中未冻水结成冰的数量已可忽略不计,土体不再冻胀,该温度值称为停止冻胀温度。粘土的停止冻胀温度为-8~-10℃,亚粘土为-5~-7℃,亚砂土为-3~-5℃,砂土为-2℃左右。冻结速度对冻胀也有影响:冷却强度大时,冻结面迅速向未冻部分推移,未冻部分的水来不及向冻结面迁移就在原地冻结成冰,无明显冻胀;冷却强度小时,冻结面推移慢,未冻水克服沿途阻力后到分凝成冰面结冰,在外部水源补给下,冻结面向未冻部分推移越慢,形成的冰层越厚,冻胀也越大。
④压力条件。增加外部荷载能降低土中水的起始冻结温度,增加冻土中的未冻水含量,同时影响引起冻结时水分迁移的抽吸力,减少向冻结面的水分迁移量,从而减小冻胀。中止粘性土的冻胀需要极大的压力,在实践中很难做到。
参考书目
童长江、管枫年:《土的冻胀与建筑物冻害防治》,水利电力出版社,北京,1985。2100433B
浅论建筑裂缝的形成类型与消除对策
建筑出现裂缝指砌体内某部分产生的内应力已超过它所能承担的抗拉、抗剪极限强度。引起砌体结构墙体裂缝的因素很多,既有地基沉降、温度变化、干缩等因素,也有设上的疏忽及施工质量、材料不合格等因素。结构裂隙控制是一门与力学、热工学、材料学等专业知识关系十分密切的、复杂的综合性学科,是建筑工程中确保工程质量不容忽视的重要环节。在该领域中,目前国内尚无统一的规范和技术指标可循。本文从一般理论和多年实践经验方面,通过对砌体结构裂隙成因的分析,阐述控制裂隙的措施和加固方法。
《土体冻胀检测装置和检测土体冻胀量方法》提出了一种土体冻胀检测装置。通过这种土体冻胀检测装置能够准确的测量出土体冻胀量。
根据《土体冻胀检测装置和检测土体冻胀量方法》的第一方面,提出了一种土体冻胀检测装置,包括:管体,在管体上间隔设置有多个沿周向的环形弱化区,在管体的末部固定设置有用于固定到土体的非冻胀层的锚固件,设置在管体内的测杆,测杆的末部与锚固件固定相连,测杆的顶部为测量部,用于设置在土体的地表的位移测量器,通过检测其相对于测量部的竖向位移而得到土体的冻胀量,当土体冻胀时,多个弱化区将管体分成多个能独立运动的管段。
在使用《土体冻胀检测装置和检测土体冻胀量方法》的土体冻胀检测装置测量地层冻胀量时,由于弱化区的存在,处于冻胀层内的管段会在纵向冻胀力的作用下独立于其余的管段而运动,即处于冻胀层内的管段形成自由管段。由于自由管段与其余的管段是彼此独立的,因此自由管段竖向上运动不会导致其余管段相对于土体而运动,更不会导致管体整体相对于土体而竖向运动。锚固件的位置也因此不会发生变化,测杆的测量部的位置也就不会发生变化,即测量冻胀的基准点没有发生变化。此外,在土体冻结是朝向土体深处逐层冻结的,当土体上层发生冻胀时,下层仍保持未冻胀状态(即未冻胀层)。由于处于未冻胀层内的管段不会相对于土体而竖向运动,因此未冻胀层也就不会到处于其中的管段的携带而竖向运动。从而,冻胀层就不会受到未冻胀层的挤压,即冻胀层的隆起高度仅来源于冻胀层本身的冻胀。因此,移测量器的位移就能真实地反应该冻胀层的实际冻胀量。随着土体被朝向深处逐层冻结,未冻胀层会再次逐层冻胀。在弱化区的作用下,更深层的未冻胀层也不会对冻胀层产生挤压。也就是说,使用该发明的土体冻胀检测装置测量地层冻胀量时,不但测量土体冻胀的基准点不发生变化,而且每一冻胀层的冻胀量的测量值都是准确的,因此土体的整体冻胀量的测量值也是准确的。
在一个实施例中,环形弱化区的数量与管体的数值之比在8:1-15:1之间。在一个优选的实施例中,弱化区的数量与管体的长度的数值之比为10:1。在一个优选的实施例中,环形弱化区沿管体的长度均匀分布。在实际施工中,这种结构的管体能够测量出对于施工足够精确的土体冻胀量,而且管体的结构仍保持简单,从而方便了土体冻胀检测装置的制造和使用。
在一个实施例中,管体由多个套管通过多个直接头顺次连接而成,在直接头的内壁上设置有径向向里凸出的挡环,在直接头的两个端部和挡环之间形成连接部,套管与连接部依靠摩擦力连接在一起而实现弱化区。在土体发生冻胀时,在冻胀纵向力的作用下套管可沿轴向在直接头内运动,从而实现每一个套管都能够相对于其余的套管而独立运动。此外,这种连接方式使得管体整体不被破坏掉,土体冻胀检测装置也因此能重复使用,这降低了成本,避免了浪费。
在一个实施例中,管体由多个套管顺次连接而成,在一个套管的内壁上设置有环形槽,在所述环形槽的外侧壁上设置有沿轴向的缺口,在另一套管上设置有与缺口和环形槽匹配的凸起,凸起与连接部配合在一起而实现套管的弱化区。在一个优选的实施例中,环形槽的轴向尺寸大于凸起的轴向尺寸。这种结构不需要额外的连接部件,仅需要将套管彼此相连就能够实现弱化区,并且每一个套管都能够相对于其余的套管而独立运动。这简化了管体的结构,降低了管体的生产成本,土体冻胀检测装置也能重复使用,避免了浪费。
根据《土体冻胀检测装置和检测土体冻胀量方法》的第二方面,提出了一种使用根据上文所述的土体冻胀检测装置来检测土体冻胀量方法,包括以下步骤,
步骤一:在土体中设置检测孔,检测孔从地表延伸穿过土体的最大冻结深度,终止于土体的非冻胀层;
步骤二:在检测孔内设置管体和测杆,并且将管体和测杆通过锚固件固定于非冻胀层中,在检测孔的孔口处设置位移测量器;
步骤三:当土体发生冻胀时,检测位移测量器相对于测杆的测量部的竖向位移,而得到土体的冻胀量。
在一个实施例中,在步骤二中,还在管体和检测孔的孔壁之间的间隙中填充有用于防止渗水的填料。这种填料能够防止水进入到土体冻胀检测装置内,而将其破坏。在一个优选的实施例中,填料包括处于管体的非弱化区的水泥浇筑层和处于管体的弱化区的散沙层。这样,在发生冻胀时,水泥浇筑层能够对自由管段一起运动,而散沙层能够避免弱化区被固定住而不能使管体分成自由管段。
在该申请中,用语“竖向”是指朝向地面的方向。应理解地是,对于不同的地面,该竖向也可有所不同。
《土体冻胀检测装置和检测土体冻胀量方法》的优点在于:(1)通过在管体上设置弱化区,使得在测量土体的冻胀量时,处于冻胀层内的管体部分形成自由管段。自由管段会随着冻胀层一起运动,而不会导致锚固件的位置会发生变化,进而测杆的测量部的位置也就不会发生变化,即测量冻胀的基准点不发生变化。另外,所测得的每一冻胀层的冻胀量也是准确的。从而,使用《土体冻胀检测装置和检测土体冻胀量方法》的装置能够准确测出土体的冻胀量。(2)构成管体的每一个套管都能够相对于其余套管而独立运动。在使用测量土体的冻胀量时,由于处于冻胀层的套管的独立运动顺应了冻胀,从而管体整体不被破坏掉,土体冻胀检测装置也因此能重复使用,这降低了成本,避免了浪费。
《土体冻胀检测装置和检测土体冻胀量方法》涉及土木工程领域,更具体来说涉及土体冻胀测量领域。
图1是根据《土体冻胀检测装置和检测土体冻胀量方法》的土体冻胀检测装置的结构示意图;
图2是根据《土体冻胀检测装置和检测土体冻胀量方法》的土体冻胀检测装置在使用状态中的示意图;
图3到图6是形成管体的弱化区的不同方式;
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例。
|
|
|
|
|
|