选择特殊符号
选择搜索类型
请输入搜索
氢氧化钠熔融法消解,调节pH值,加入抗坏血酸溶液及钼酸铵盐溶液显色15min,用30mm比色皿,以水为参比.于700nm波长处测定吸光度,求出土壤中的总磷。本法简便、可靠、能够满足环境监测对土壤中总磷分析的需要。
第四种:高氯酸-硫酸快速消化,扩散定氮法
方法原理:土壤样品用硫酸消化,在强氧化剂高氯酸的参与下,有机氮分解转化成氨,并和硫酸结合成硫酸铵。然后去一部分消化液,移到康惠皿中,加碱使氨扩散,以硼酸吸收,用标准碱滴定。2100433B
原子吸收光谱法测定多通过稀释并加入绝盐做电离抑制剂后测定,这样,可以增加分析手续和试剂消耗,同时大倍量的稀释也引入分析误差,在次灵敏线下用原子吸收光谱法直接测定高含量的钾,所见报道不多。本法较详细的试验了用次灵敏线原子吸收光谱法测定高含量钾的条件,确定了适宜的方法,测定了标准参考样、三元复合肥、硫酸钾、磷酸二氢钾等样品,测定结果与标准值及重量法结果一致。
现有的联合测定方法可分两类,一类是在所制备的待测液中可同时测定两种元素,另一类则可同时测定三种元素。待测液中可同时测定两种元素的方法又分磷、钾联合测定方法和氮、磷联合测定方法。磷、钾联合测定方法中主要有碳酸钠熔融法和氢氧化钠熔融法,它们均属于碱熔法,是利用碱与土壤在高温下共熔,使土壤中磷化合物和钾化合物转变为可溶性化合物,用稀酸溶解制成待测液。应用碱熔法可使土壤充分分解,特别是碳酸钠熔融法,分解完全,准确度很高。但由于需用价值昂贵的铂坩场,一般实验室难以做到。
氢氧化钠熔融法在土壤分解方面略逊于碳酸钠熔融法,但其准确度还是较好的,而且可以不使用铂坩锅,用银坩锅,或镍堆即可。所以此两种方法得到广泛应用。
显色剂的量和吸光度是有关系的,显色剂加得多吸光性就强,所以必须准确。其实磷钼杂多酸是必须被还原的。如果没错的话,实验原理是这样的:在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即...
1 原理 碘化汞和碘化钾的碱性溶液与氨反映生成淡红棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410~425nm范围内测其吸光度,计算其含量. 本法最低检出浓度为0.025mg/L(光...
铜锌铅镉原子吸收分光光度法
铜锌铅镉原子吸收分光光度法
分光光度法测定煤沥青中硅含量
研究了分光光度法测定煤沥青中硅含量,试样经灰化后与碳酸钠高温熔融生成可溶性硅酸盐,与钼酸铵反应生成硅钼黄,在强酸性条件下用硫酸亚铁铵还原为硅钼蓝,在波长810nm下有最大吸收,用标准曲线法定量。进行了显色反应条件试验以及精密度试验、回收率试验、对照试验,方法的加标回收率为91%~105%,相对标准偏差(RSD)小于7%。
钾是植物的主要营养元素,同时也是土壤中常因供应不足而影响作物产量的三要素之一。农作物含钾与含氮量相近而比含磷量高。且在许多高产作物中,含钾量超过含氮量。钾与氮、磷不同,它不是植物体内有机化合物的成分。迄今为止,尚未在植物体内发现含钾的有机化合物。钾呈离子状态溶于植物汁液之中,其主要功能与植物的新陈代谢有关。
钾在植物代谢活跃的器官和组织中分布量较高,具有保证各种代谢过程的顺利进行、促进植物生长、增强抗病虫害和抗倒伏能力等功能。
钾能够促进光合作用,缺钾使光合作用减弱。钾能明显地提高植物对氮的吸收和利用,并很快转化为蛋白质。钾还能促进植物经济用水。由于钾离子能较多地累积在作物细胞之中,因此使细胞渗透压增加并使水分从低浓度的土壤溶液中向高浓度的根细胞中移动。在钾供应充足时,作物能有效地利用水分,并保持在体内,减少水分的蒸腾作用。
钾的另一特点是有助于作物的抗逆性。钾的重要生理作用之一是增强细胞对环境条件的调节作用。钾能增强植物对各种不良状况的忍受能力,如干旱、低温、含盐量、病虫危害、倒伏等。
植物最常见的缺钾症状是沿叶缘的灼伤状,首先从下部的老叶片开始,逐步向上部叶片扩展,并且有斑点产生。缺钾植物生长缓慢,根系发育差。茎杆脆弱,常出现倒伏。种子和果实小且干皱。植株对病害的抗性低。具有明显的抗伏倒性,可以增加果实类、蔬菜类作物口感。
缺少元素口诀:氮黄红磷钾褐斑
磷在植物体中的含量仅次于氮和钾,一般在种子中含量较高。磷对植物营养有重要的作用。植物体内几乎许多重要的有机化合物都含有磷。
磷是植物体内核酸、蛋白质和酶。等多种重要化合物的组成元素。
磷在植物体内参与光合作用、呼吸作用、能量储存和传递、细胞分裂、细胞增大和其他一些过程。
磷能促进早期根系的形成和生长,提高植物适应外界环境条件的能力,有助于植物耐过冬天的严寒。
磷能提高许多水果、蔬菜和粮食作物的品质。
磷有助于增强一些植物的抗病性,抗旱和抗寒能力。
磷有促熟作用,对收获和作物品质是重要的。
但是用磷过量会使植物晚熟结实率下降。
我国缺磷土壤的分布
我国缺磷土壤面积约为10.09亿亩,主要是北方石灰性土壤、东北白浆土、红壤、紫色土和低产水稻土。所谓缺磷土壤一般是指土壤有效磷(P)小于10mg/kg的土壤。从可以看出,缺磷土壤面积大于该省区耕地面积75%的省份遍布我国东南西北,这就是磷肥为我国第二大化肥工业的根本原因。
有关磷肥
磷可以促进作物生长,还可增强作物的抗寒、抗旱能力。作物缺磷时,表现为生长迟缓、产量降低。氮磷过量也会引起贪青晚熟、结实率下降。
常用的磷肥有磷矿粉[Ca3(PO4)2]、钙镁磷肥(钙和镁的磷酸盐)、过磷酸钙【磷酸二氢钙Ca(H2PO4)2]和CaSO4的混合物】等含磷物质。
是植物生长的必需养分,它是每个活细胞的组成部分。植物需要大量氮。
氮素是植物体内蛋白质、核酸和叶绿素的组成成分 ,叶绿素a和叶绿素b;都是含氮化合物。绿色植物进行光合作用,使光能转变为化学能,把无机物(二氧化碳和水)转变为有机物(葡萄糖)和氧气,是借助于叶绿素的作用。葡萄糖是植物体内合成各种有机物的原料,而叶绿素则是植物叶子制造"粮食"的工厂。氮也是植物体内维生素和能量系统的组成部分。
氮素对植物生长发育的影响是十分明显的。当氮素充足时,植物可合成较多的蛋白质,促进细胞的分裂和增长,因此植物叶面积增长快,能有更多的叶面积用来进行光合作用。
此外,氮素的丰缺与叶子中叶绿素含量有密切的关系。这就使得我们能从叶面积的大小和叶色深浅上来判断氮素营养的供应状况。在苗期,一般植物缺氮往往表现为生长缓慢,植株矮小,叶片薄而小,叶色缺绿发黄。禾本科作物则表现为分孽少。生长后期严重缺氮时,则表现为穗短小,籽粒不饱满。在增施氮肥以后,对促进植物生长健壮有明显的作用。往往施用后,叶色很快转绿,生长量增加。但是氮肥用量不宜过多,过量施用氮素时,叶绿素数量增多,能使叶子更长久地保持绿色,以致有延长生育期、贪青晚熟的趋势。对一些块根、块茎作物,如糖用甜菜,氮素过多时,有时表现为叶子的生长量显著增加,但具有经济价值的块根产量却少得使人失望。
我国土壤全氮含量的分布
植物养分的主要来源是土壤。我国土壤全氮含量的基本分布特点是:东北平原较高,黄淮海平原、西北高原、蒙新地区较低,华东、华南、中南、西南地区中等。大体呈现南北较高,中部略低的分布。但南方略高主要指水稻土,旱地含氮量很低。
一般认为土壤全氮含量<0.2%即有可能缺氮,我国大部分耕地的土壤全氮含量都在0.2%以下,这就是为什么我国几乎所有农田都需要施用化学氮肥的原因。
我国农田相对严重缺氮的土壤主要分布在我国的西北和华北地区。如果把土壤全氮含量等于 0.075% 作为严重缺氮的界限,严重缺氮耕地超过面积一半的有山东、河北、河南、陕西、新疆等五个省区。