选择特殊符号
选择搜索类型
请输入搜索
本书主要包括天线理论与技术及相关技术方面的内容。第1章介绍了电磁波辐射的基本原理和天线的基本概念和知识;第2章至第5章介绍了常用的天线形式,包括振子天线、微带天线和螺旋天线,也包含了天线阵列分析和综合方面的内容;第6章给出了几个天线设计的实例,可以作为教学案例进行实践练习;第7章介绍了天线测量方面的知识;第8章介绍了天线罩方面的知识。
目 录
第1章 天线理论基础 1
1.1 电磁辐射问题的解 1
1.1.1 Maxwell方程组及波动方程 1
1.1.2 辐射积分 2
1.2 辐射机理 7
1.2.1 运动点电荷的场 7
1.2.2 细线电流模型 13
1.2.3 辐射的产生 14
1.3 基本辐射元 16
1.3.1 电偶极子 16
1.3.2 磁偶极子(小环) 18
1.3.3 惠更斯元 20
1.4 天线的性能参数 20
1.4.1 天线的电路特性与能量传输 21
1.4.2 天线的空间场特性 23
1.4.3 天线的互阻抗与收发互易性 31
1.4.4 Friis传输方程和雷达方程 34
1.5 天线的匹配与平衡 35
1.5.1 阻抗匹配 36
1.5.2 平衡馈电 37
1.6 天线的分析方法 38
第2章 振子天线 40
2.1 振子 40
2.2 八木天线 43
2.3 角反射器天线 49
2.4 地面上的天线(含理想导电和非完纯导电) 55
第3章 微带天线 64
3.1 微带天线概述 64
3.2 微带天线分析方法 65
3.3 微带天线宽带技术 70
3.4 微带天线圆极化技术 81
3.4.1 一点馈电单片圆极化微带天线 82
3.4.2 圆极化微带天线宽角轴比改进的方法 89
3.5 微带天线表面波抑制 93
第4章 螺旋天线 96
4.1 圆柱螺旋天线 96
4.1.1 螺旋的几何表示 96
4.1.2 轴向模波瓣图和波沿单绕螺旋的传播相速 97
4.1.3 单绕轴向模单圈方螺旋的波瓣图 103
4.1.4 单绕螺旋的完整轴向模波瓣图 104
4.1.5 单绕轴向模螺旋天线的轴比和圆极化条件 106
4.1.6 单绕螺旋天线轴向模辐射的宽频带特性 109
4.1.7 波瓣图、频带宽度、增益、阻抗和轴比公式列表 110
4.1.8 单绕轴向模螺旋天线的实际设计考虑 111
4.2 平面螺旋天线 116
4.2.1 非频变天线基本原理 116
4.2.2 非频变的数学基础 118
4.2.3 螺旋天线 119
4.2.4 螺旋模式 123
4.2.5 平面螺旋天线的馈电 126
4.2.6 平面螺旋天线的支撑技术 127
4.2.7 螺旋臂终端的处理 129
4.2.8 波束形成 130
第5章 天线阵列分析与综合 132
5.1 天线阵列的分析 132
5.1.1 线阵的阵因子 132
5.1.2 均匀激励的等间距线阵 137
5.2 综合问题 142
5.2.1 线源波束赋形的综合方法 144
5.2.2 线阵波束赋形的综合法 148
5.2.3 低旁瓣、窄主瓣方法 152
第6章 天线应用实例 162
6.1 螺旋天线 162
6.1.1 应用背景 162
6.1.2 设计过程 162
6.2 微带天线 174
6.2.1 应用背景 174
6.2.2 设计过程 174
6.2.3 天线阵列的设计 180
6.3 缝隙天线 186
6.3.1 应用背景 186
6.3.2 缝隙天线原理 186
6.3.3 天线的仿真 192
本 章 附 录 196
第7章 天线测量 199
7.1 概述 199
7.2 测试场 200
7.2.1 天线测试场的一般要求 200
7.2.2 反射测试场 201
7.2.3 自由空间测试场 203
7.2.4 紧缩场 207
7.2.5 近场测试场 210
7.2.6 各种天线测试场比较 212
7.3 主要参量测量 213
7.3.1 方向图测量 213
7.3.2 天线增益测量 216
7.3.3 天线极化测量 220
7.4 典型测量系统 221
第8章 天线罩 224
8.1 天线罩的基本概念 224
8.1.1 什么是天线罩 224
8.1.2 天线罩的分类 225
8.1.3 天线罩对天线电气性能的影响 226
8.1.4 天线罩的性能要求 227
8.2 罩壁传输特性 229
8.2.1 通用计算公式 229
8.2.2 单层结构传输特性 231
8.2.3 A型夹层传输特性 232
8.2.4 多层夹层传输特性 233
8.2.5 B型夹层传输特性 233
8.2.6 内含金属物介质层传输特性 233
8.2.7 空间骨架结构传输特性 234
8.3 天线罩电气特性分析方法 234
8.3.1 天线罩分析方法发展历程 234
8.3.2 高频分析方法 235
8.3.3 全波分析方法 237
8.3.4 高低频混合方法 239
8.3.5 各种分析方法适用范围 240
8.4 天线罩电气分析实例——几何光学法 241
8.4.1 引言 241
8.4.2 计算原理 242
8.4.3 罩体曲面形状的描述 243
8.4.4 电磁射线与罩壁的交点 244
8.4.5 入射波的入射角 245
8.4.6 入射波的极化角 246
8.4.7 透射场计算 246
8.4.8 加罩前后方向图计算 248
8.4.9 天线罩电气性能计算 249
8.5 天线罩电气测量技术 252
8.5.1 天线罩材料特性测量 252
8.5.2 罩壁传输特性测量 254
8.5.3 整罩性能测量 257
参考文献 260
本书是根据目前高职高专院校工程造价等专业的教学基本要求编写而成。本书共13章,包括建筑概述,建筑制图与识图的基本知识,基础,墙体,楼板层与地面,楼梯,屋顶,门与窗,变形缝,工业建筑构造,建筑施工图的识...
《大设计》无所不在。在会议室和战场上;在工厂车间中也在超市货架上;在自家的汽车和厨房中;在广告牌和食品包装上;甚至还出现在电影道具和电脑图标中。然而,设计却并非只是我们日常生活环境中的一种常见现象,它...
本书分为上篇“平面构成”和下篇“色彩构成”两个部分,每一部分的最后章节选编了一些本校历年来学生的优秀作品作为参考,图文并茂、深入浅出。此外,本书最后部分附有构成运用范例及题型练习,可供自考学生参考。本...
《地下工程测量》内容简介
本书结合作者多年教学、科研经验及工程实践,较系统地介绍了地下工程测量的基本理论和基本方法,从理论和实践两个角度帮助读者提高分析和解决地下工程领域测绘的能力。本修订版在传统测量技术的基础上,新增测绘新技术元素,操作适用性更强,新的地铁工程测量一章更具有针对性。全书内容丰富,具有一定的深度和广度,充分反映了地下工程测量最新技术及其应用。
《中国工程地质世纪成就》内容简介
《中国工程地质世纪成就》内容简介
移动通信常用的基站天线、直放站天线与室内天线。
无论是GSM 还是CDMA, 板状天线是用得最为普遍的一类极为重要的基站天线。这种天线的优点是:增益高、扇形区方向图好、后瓣小、垂直面方向图俯角控制方便、密封性能 可靠以及使用寿命长。
板状天线也常常被用作为直放站的用户天线,根据作用扇形区的范围大小,应选择相应的天线型号。
频率范围: 824-960 MHz
频带宽度: 70MHz
增益: 14 ~ 17 dBi
极化: 垂直
标称阻抗: 50 Ohm
电压驻波比≤ 1.4
前后比 >25dB
采用多个半波振子排成一个垂直放置的直线阵
在直线阵的一侧加一块反射板 (以带反射板的二半波振子垂直阵为例)
增益为 G = 11 ~ 14 dBi
为提高板状天线的增益,还可以进一步采用八个半波振子排阵
前面已指出,四个半波振子排成一个垂直放置的直线阵的增益约为 8 dBi;一侧加有一个反射板的四元式直线阵,即常规板状天线,其增益约为 14 ~ 17 dBi。
一侧加有一个反射板的八元式直线阵,即加长型板状天线,其增益约为 16 ~ 19 dBi。 不言而喻,加长型板状天线的长度,为常规板状天线的一倍,达 2.4 m 左右。
从性能价格比出发,人们常常选用栅状抛物面天线作为直放站施主天线。由于抛物面具有良好的聚焦作用,所以抛物面天线集射能力强,直径为 1.5 m 的栅状抛物面天线,在900兆频段,其增益即可达 G = 20dBi。它特别适用于点对点的通信,例如它常常被选用为直放站的施主天线。
抛物面采用栅状结构,一是为了减轻天线的重量,二是为了减少风的阻力。
抛物面天线一般都能给出 不低于 30 dB 的前后比 ,这也正是直放站系统防自激而对接收天线所提出的必须满足的技术指标。
八木定向天线,具有增益较高、结构轻巧、架设方便、价格便宜等优点。因此,它特别适用于点对点的通信,例如它是室内分布系统的室外接收天线的首选天线类型。
八木定向天线的单元数越多,其增益越高,通常采用 6 - 12 单元的八木定向天线,其增益可达 10-15dBi。
室内吸顶天线必须具有结构轻巧、外型美观、安装方便等优点。现今市场上见到的室内吸顶天线,外形花色很多,但其内芯的构造几乎都是一样的。这种吸顶天线的内部结构,虽然尺寸很小,但由于是在天线宽带理论的基础上,借助计算机的辅助设计,以及使用网络分析仪进行调试,所以能很好地满足在非常宽的工作频带内的驻波比要求,按照国家标准,在很宽的频带内工作的天线其驻波比指标为VSWR ≤ 2 。当然,能达到VSWR ≤ 1.5 更好。顺便指出,室内吸顶天线属于低增益天线, 一般为G = 2 dBi。
环形天线和人体非常相似, 有普通的单极或多级 天线功能。再加上小型环形天线的体积小、高可靠性
和低成本,使其成为微小型通信产品的理想天线。典型的环形天线由电路板上的铜走线组成的电回路构成,也可能是一段制作成环形的导线。其等效电路相当于两个串连电阻与一个电感的串连( 如图1 所示) 。Rrad 是环形天线实际发射能量的电阻模型,它消耗的功率就是电路的发射功率。
假设流过天线回路的电流为I,那么Rrad 的消耗功率,即RF 功率为Pradiate=I2·Rrad。电阻Rloss 是环形天线因发热而消耗能量的电阻模型,它消耗的功率是一种不可避免的能量损耗,其大小为Ploss=I2·Rloss。如果Rloss>Rrad,那么损耗的功率比实际发射的功率大,因此这个天线是低效的。天线消耗的功率就是发射功率和损耗功率之和。实际上,环形天线的设计几乎无法控制Ploss 和Prad,因为Ploss 是由制作天线的导体的导电能力和导线的大小决定的,而Prad 是由天线所围成的面积大小决定的。
室内壁挂天线同样必须具有结构轻巧、外型美观、安装方便等优点。
现今市场上见到的室内壁挂天线,外形花色很多,但其内芯的购造几乎也都是一样的。这种壁挂天线的内部结构,属于空气介质型微带天线。由于采用了展宽天线频宽的辅助结构,借助计算机的辅助设计,以及使用网络分析仪进行调试,所以能较好地满足了工作宽频带的要求。顺便指出,室内壁挂天线具有一定的增益,约为G = 7 dBi。
影响天线性能的临界参数有很多,通常在天线设计过程中可以进行调整,如谐振频率、阻抗、增益、孔径或辐射方向图、极化、效率和带宽等。另外,发射天线还有最大额定功率,而接收天线则有噪声抑制参数。
“谐振频率”和“电谐振”与天线的电长度相关。电长度通常是电线物理长度除以自由空间中波传输速度与电线中速度之比。天线的电长度通常由波长来表示。天线一般在某一频率调谐,并在此谐振频率为中心的一段频带上有效。但其它天线参数(尤其是辐射方向图和阻抗)随频率而变,所以天线的谐振频率可能仅与这些更重要参数的中心频率相近。
天线可以在与目标波长成分数关系的长度所对应的频率下谐振。一些天线设计有多个谐振频率,另一些则在很宽的频带上相对有效。最常见的宽带天线是对数周期天线,但它的增益相对于窄带天线则要小很多。
“增益”指天线最强辐射方向的天线辐射方向图强度与参考天线的强度之比取对数。如果参考天线是全向天线,增益的单位为dBi。比如,偶极子天线的增益为2.14dBi 。偶极子天线也常用作参考天线(这是由于完美全向参考天线无法制造),这种情况下天线的增益以dBd为单位。
天线增益是无源现象,天线并不增加激励,而是仅仅重新分配而使在某方向上比全向天线辐射更多的能量。如果天线在一些方向上增益为正,由于天线的能量守恒,它在其他方向上的增益则为负。因此,天线所能达到的增益要在天线的覆盖范围和它的增益之间达到平衡。比如,航天器上碟形天线的增益很大,但覆盖范围却很窄,所以它必须精确地指向地球;而广播发射天线由于需要向各个方向辐射,它的增益就很小。
碟形天线的增益与孔径(反射区)、天线反射面表面精度,以及发射/接收的频率成正比。通常来讲,孔径越大增益越大,频率越高增益也越大,但在较高频率下表面精度的误差会导致增益的极大降低。
“孔径”和“辐射方向图”与增益紧密相关。孔径是指在最高增益方向上的“波束”截面形状,是二维的(有时孔径表示为近似于该截面的圆的半径或该波束圆锥所呈的角)。辐射方向图则是表示增益的三维图,但通常只考虑辐射方向图的水平和垂直二维截面。高增益天线辐射方向图常伴有“副瓣”。副瓣是指增益中除主瓣(增益最高“波束”)外的波束。副瓣在如雷达等系统需要判定信号方向的时候,会影响天线质量,由于功率分配副瓣还会使主瓣增益降低。
增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。可以这样来理解增益的物理含义------为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需 100 / 20 = 5W 。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。
半波对称振子的增益为G=2.15dBi。
4个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G=8.15dBi ( dBi这个单位表示比较对象是各向均匀辐射的理想点源)。
如果以半波对称振子作比较对象,其增益的单位是dBd。
半波对称振子的增益为G=0dBd(因为是自己跟自己比,比值为1,取对数得零值。)垂直四元阵,其增益约为G=8.15–2.15=6dBd。
增益特性:
⑴天线是无源器件,不能产生能量,天线增益只是将能量有效集中向某特定的方向辐射或接收电磁波能力。
⑵天线增益由振子叠加而产生,增益越高,天线长度越长。
⑶天线增益越高,方向性越好,能量越集中,波瓣越窄。
天线的带宽是指它有效工作的频率范围,通常以其谐振频率为中心。天线带宽可以通过以下多种技术增大,如使用较粗的金属线,使用金属“网笼”来近似更粗的金属线,尖端变细的天线元件(如馈电喇叭中),以及多天线集成的单一部件,使用特性阻抗来选择正确的天线。小型天线通常使用方便,但在带宽、尺寸和效率上有着不可避免的限制。
“阻抗”类似于光学中的折射率。电波穿行于天线系统不同部分(电台、馈线、天线、自由空间)是会遇到阻抗差异。在每个接口处,取决于阻抗匹配,电波的部分能量会反射回源,在馈线上形成一定的驻波。此时电波最大能量与最小能量比值可以测出,称之为驻波比(SWR)。驻波比为1:1是理想情况。1.5:1的驻波比在能耗较为关键的低能应用上被视为临界值。而高达6:1的驻波比也可出现在相应的设备中。极小化各处接口的阻抗差(阻抗匹配)将减小驻波比并极大化天线系统各部分之间的能量传输。
天线的复阻抗涉及该天线工作时的电长度。通过调节馈线的阻抗,即将馈线当作阻抗变换器,天线的阻抗可以和馈线和电台相匹配。更为常见的是使用天线调谐器、巴伦、阻抗变换器、包含电容和电感的匹配网络,或者如伽马匹配的匹配段。
半波双极子天线(同上)增益(dBi)辐射方向图是天线发射或接受相对场强度的图形描述。由于天线向三维空间辐射,需要数个图形来描述。如果天线辐射相对某轴对称(如双极子天线、螺旋天线和某些抛物面天线),则只需一张方向图。
不同的天线供应商/使用者对于方向图有着不同的标准和制图格式。
无限长传输线上各处的电压与电流的比值定义为传输线的特性阻抗,用Z0 表示。同轴电缆的特性阻抗的计算公式为
Z。=〔60/√εr〕×Log ( D/d ) [ 欧]。
式中,D 为同轴电缆外导体铜网内径; d 为同轴电缆芯线外径;
εr为导体间绝缘介质的相对介电常数。
通常Z0 = 50 欧 ,也有Z0 = 75 欧的。
由上式不难看出,馈线特性阻抗只与导体直径D和d以及导体间介质的介电常数εr有关,而与馈线长短、工作频率以及馈线终端所接负载阻抗无关。
信号在馈线里传输,除有导体的电阻性损耗外,还有绝缘材料的介质损耗。这两种损耗随馈线长度的增加和工作频率的提高而增加。因此,应合理布局尽量缩短馈线长度。
单位长度产生的损耗的大小用衰减系数 β 表示,其单位为 dB / m (分贝/米),电缆技术说明书上的单位大都用 dB / 100 m(分贝/百米) .
设输入到馈线的功率为P1 ,从长度为 L(m )的馈线输出的功率为P2 ,传输损耗TL可表示为:
TL = 10 ×Lg ( P1 /P2 ) ( dB )
衰减系数为
β = TL / L ( dB / m )
例如, NOKIA 7 / 8英寸低耗电缆, 900MHz 时衰减系数为 β= 4.1 dB / 100 m ,也可写成 β=3 dB / 73 m , 也就是说, 频率为 900MHz 的信号功率,每经过 73 m 长的这种电缆时,功率要少一半。
而普通的非低耗电缆,例如, SYV-9-50-1, 900MHz 时衰减系数为 β = 20.1 dB / 100 m ,也可写成β=3dB / 15 m ,也就是说, 频率为 900MHz 的信号功率,每经过15 m 长的这种电缆时,功率就要少一半。
定义:天线输入端信号电压与信号电流之比,称为天线的输入阻抗。 输入阻抗具有电阻分量 Rin 和电抗分量 Xin ,即 Zin = Rin j Xin 。电抗分量的存在会减少天线从馈线对信号功率的提取,因此,必须使电抗分量尽可能为零,也就是应尽可能使天线的输入阻抗为纯电阻。事实上,即使是设计、调试得很好的天线,其输入阻抗中总还含有一个小的电抗分量值。
输入阻抗与天线的结构、尺寸以及工作波长有关,半波对称振子是最重要的基本天线 ,其输入阻抗为 Zin = 73.1 j42.5 (欧) 。当把其长度缩短(3~5)%时,就可以消除其中的电抗分量,使天线的输入阻抗为纯电阻,此时的输入阻抗为 Zin = 73.1 (欧) ,(标称 75 欧) 。注意,严格的说,纯电阻性的天线输入阻抗只是对点频而言的。
顺便指出,半波折合振子的输入阻抗为半波对称振子的四倍,即 Zin = 280 (欧) ,(标称300欧)。
有趣的是,对于任一天线,人们总可通过天线阻抗调试,在要求的工作频率范围内,使输入阻抗的虚部很小且实部相当接近 50 欧,从而使得天线的输入阻抗为Zin = Rin = 50 欧------这是天线能与馈线处于良好的阻抗匹配所必须的。
无论是发射天线还是接收天线,它们总是在一定的频率范围(频带宽度)内工作的,天线的频带宽度有两种不同的定义:
一种是指:在驻波比SWR ≤ 1.5 条件下,天线的工作频带宽度;
一种是指:天线增益下降 3 分贝范围内的频带宽度。
在移动通信系统中,通常是按前一种定义的,具体的说,天线的频带宽度就是天线的驻波比SWR 不超过 1.5 时,天线的工作频率范围。
一般说来,在工作频带宽度内的各个频率点上, 天线性能是有差异的,但这种差异造成的性能下降是可以接受的。
内容简介
本书主要讲述天线工程设计的基本理论和设计方法。
全书共分10章:
第1章简要介绍了天线的基本原理、概念和表征天线性能的技术参数;
第2章重点对电磁仿真算法进行了分析,对基于矩量法、有限元法和有限积分法的几种仿真软件进行了介绍;
第3章讲述了无线通信系统中常用线天线的设计及仿真问题;
第4章介绍在天线工程设计中有着重要用途的宽频带天线,包括加载鞭天线、对数周期天线、锥削槽天线等;
第5章简要介绍微带天线的理论及设计实例;
第6章讲述阵列天线问题,包括直线阵列天线、平面阵列天线、相控阵天线及设计实例;
第7章对用于卫星通信系统的圆极化天线设计进行了分析;
第8章讨论了口径天线的基本概念和相应的设计问题;
第9章综述天线测量的基本知识;
第10章对天线的新技术发展进行了介绍。
本书内容偏重工程设计,可以为天线设计人员提供各种常用类型天线的设计思路和方法,也能够为他们的科研实践提供帮助。
本书适合作为电磁场和微波技术相关专业的教材,也可作为专业技术人员的参考资料。