选择特殊符号
选择搜索类型
请输入搜索
拜耳命名法 | 弗兰斯蒂德命名法 | 其他名称 | 中国星官 | 视星等 | 绝对星等 | 光年距离 |
望远镜座α | -- | -- | 鳖一 | 3.49 | -0.97 | 249 |
望远镜座ζ | -- | -- | -- | 4.10 | 1.14 | 127 |
望远镜座ε | -- | -- | -- | 4.52 | -0.99 | 409 |
望远镜座λ | -- | -- | -- | 4.85 | -1.21 | 531 |
望远镜座ι | -- | -- | -- | 4.88 | -0.58 | 398 |
望远镜座δ1 | -- | -- | -- | 4.92 | -2.04 | 795 |
望远镜座ξ | -- | -- | 波斯一 | 4.93 | -3.93 | 1254 |
望远镜座η | -- | -- | -- | 5.03 | 1.61 | 155 |
望远镜座δ2 | -- | -- | -- | 5.07 | -2.62 | 1117 |
望远镜座κ | -- | -- | -- | 5.18 | 0.38 | 293 |
望远镜座ν | -- | -- | -- | 5.33 | 1.72 | 170 |
望远镜座ρ | -- | -- | -- | 5.17 | 1.55 | 171 |
望远镜座μ | -- | -- | -- | 6.29 | 3.43 | 120 |
NGC6584位于望远镜座α西南的球状星团,视星等8.3,距离为27700光年。
它的赤经为 18 18.6,赤纬为 -52° 13′,大小 7.9′。
绝对是,首先观景和观鸟,显然是用看更舒适,便携性也更好,单筒用的时间长了眼睛容易疲劳,而且没有视觉的成像叠加作用也会影响到画面的立体感(你在电捂住一只眼看空间变化幅度较大的画面就能体会到了)。 而且...
入门玩一下的话几百块的就可以 好的要多贵有多贵
(一)种类(Porro Prusm vs Roof Prism) 望远镜可分为...
地基望远镜主镜支撑性能分析
主镜面型精度是地基大口径望远镜最关键的技术指标之一。为了研究主镜室以及主镜底支撑和侧支撑系统的重力变形造成的主镜面型误差,介绍了一地基光电望远镜的主镜室及详细的主镜支撑结构,借助于有限元法,建立了主镜,主镜室和支撑结构的详细有限元模型,分析计算了主镜在支撑状态下的镜面变形情况,并通过ZYGO干涉仪进行了面型检测。计算结果和实测结果对比,说明了主镜室及其支撑结构引入的主镜面型误差大小,同时也验证了有限元模型的正确性。
光学天文望远镜微晶玻璃主副镜铝镜面清洗剂的研究
通过对化学清洗机理分析,经与国内外多种清洗剂分析,比较和腐蚀试验,运用先进测试仪器,研制成对微晶玻璃腐蚀量极少、清洗速度快、操作方便、设备简单和对人无害的最佳的大型天文光学望远镜主、副镜国产V02微晶玻璃铝清洗剂。
--与任何一种折射式或反射式望远镜一样,有2吋、1.25吋及0.965吋等各种规格可以选择,只要目镜与目镜座规格一样就可以使用了。
在第一架望远镜被制造出来几十年内,用镜子收集和聚焦光线的反射望远镜就被制造出来。在20世纪,许多新型式的望远镜被发明,包括1930年代的电波望远镜和1960年代的红外线望远镜。望远镜这个名词现在是泛指能够侦测不同区域的电磁频谱的各种仪器,在某些情况下还包括其他类型的探测仪器。
英文的“telescope”(来自希腊的τῆλε,tele"far"和σκοπεῖν,skopein"to look or see";τηλεσκόπος,teleskopos"far-seeing")。这个字是希腊数学家乔瓦尼·德米西亚尼在1611年于伽利略出席的意大利猞猁之眼国家科学院的一场餐会中,推销他的仪器时提出的。在《星际信使》这本书中,伽利略使用的字是"perspicillum"。
主条目:望远镜史
关于望远镜,现存的最早纪录是荷兰米德尔堡的眼镜制造商汉斯·利普西在1608年向政府提交专利的折射望远镜。实际的发明者是谁不能确定,它的发展要归功于三个人:汉斯·利普西、米尔德堡的眼镜制造商撒迦利亚·詹森(Zacharias Janssen)和阿尔克马尔的雅各·梅提斯。望远镜被发明得消息很快就传遍欧洲。伽利略在1609年6月听到了,就在一个月内做出自己的望远镜用来观测天体。
在折射望远镜发明之后不久,将物镜,也就是收集光的元件,用面镜来取代透镜的想法,就开始被研究。使用抛物面镜的潜在优点 -减少球面像差和无色差,导致许多种设计和制造反射望远镜的尝试。在1668年,艾萨克·牛顿制造了第一架实用的反射望远镜,现在就以他的名字称这种望远镜为牛顿反射镜。
在1733年发明的消色差透镜纠正了存在于单一透镜的部分色差,并且使折射镜的结构变得较短,但功能更为强大。尽管反射望远镜不存在折射望远镜的色差问题,但是金属镜快速变得昏暗的锈蚀问题,使得反射镜的发展在18世纪和19世纪初期受到很大的限制 -在1857年发展出在玻璃上镀银的技术,才解决了这个困境,进而在1932年发展出镀铝的技术。受限于材料,折射望远镜的极限大约是一米(40英寸),因此自20世纪以来的大型望远镜全部都是反射望远镜。目前,最大的反射望远镜已经超过10米(33英尺),正在建造和设计的有30-40米。
20世纪也在更关广的频率,从电波到伽玛射线都在发展。在1937年建造了第一架电波望远镜,自此之后,已经开发出了各种巨大和复杂的天文仪器。
望远镜这个名词涵盖了各种各样的仪器。大多数是用来检测电磁辐射,但对天文学家而言,主要的区别在收集的光(电磁辐射)波长不同。
望远镜可以依照它们所收集的波长来分类:
X射线望远镜:使用在波长比紫外线更短的电磁波。
紫外线望远镜:使用于波长比可见光短的电磁波。
光学望远镜:使用在可见光的波长。
红外线望远镜:使用在比可见光长的电磁波。
次毫米波望远镜:使用在比红外线更长的电磁波。
非涅耳成像仪:一种光学透镜技术。
X射线光学:某些X射线波长的光学。
随着波长的增加,可以更容易地使用天线技术进行电磁辐射的交互作用(虽然它可能需要制作很小的天线)。近红外线可以像可见光一样的处理,而在远红外线和次毫米波的范围内,望远镜的运作就像是一架电波望远镜。例如,观测波长从3微米(0.003mm)到2000微米(2毫米)的詹姆士克拉克麦克斯威尔望远镜(JCMT),就使用铝制的抛物面天线。另一方面,观察从3μm(0.003毫米)到180微米(0.18 毫米) 的史匹哲太空望远镜就可以使用面镜成像(反射光学)。同样使用反射光学的,还有哈伯太空望远镜可以观测0.2μm(0.0002 毫米)到1.7微米(0.0017 毫米),从红外线到紫外线的第三代广域照相机。
望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到,又称"千里镜"。 | |
伽利略望远镜:人类历史上第一台天文望远镜,由意大利天文学家、物理学家伽利略1609年发明 | 伽利略望远镜 |
牛顿望远镜:诞生于1668年,用2.5cm直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45度角的反射镜,使经主镜反射后的会聚光经反射镜以90度角反射出镜筒后到达目镜,这种系统称为牛顿式反射望远镜。 | 牛顿望远镜 |
赫歇尔望远镜:诞生于18世纪晚期,由德国音乐师和天文学家威廉-赫歇尔制造。 | 赫歇尔望远镜 |
耶基斯折射望远镜:坐落于美国威斯康星州的耶基斯天文台,主透镜建成于1895年,是当时世界上最大望远镜。 | 耶基斯折射望远镜 |
威尔逊山望远镜:1908年,美国天文学家乔治-埃勒里-海耳主持建成了口径60英寸的反射望远镜,安装于威尔逊山。 | 威尔逊山望远镜 |
胡克望远镜:在富商约翰-胡克的赞助下,口径为100英寸的反射望远镜于1917年在威尔逊山天文台建成。 | 胡克望远镜 |
海尔望远镜:望远镜在1948年完成,直到1980年代初期,BTA-6望远镜能够运作之前,海尔望远镜一直是世界最大的望远镜。 | 海尔望远镜 |
甚大阵射电望远镜:甚大阵射电望远镜坐落于美国新墨西哥州索科洛,于1980年建成并投入使用。 | 甚大阵射电望远镜 |
哈勃太空望远镜:是以天文学家哈勃为名,在轨道上环绕著地 球的望远镜,于1990年发射。 | 哈勃太空望远镜 |
凯克望远镜:凯克望远镜有两台,分别建造于1991年和1996年,像足球那样的圆顶有11层楼高,凯克是以它的出资建造者来命名的。 | 凯克望远镜 |
斯隆望远镜:"斯隆数字天空勘测计划"的2.5米望远镜位于美国新墨西哥州阿柏角天文台。该望远镜拥有一个相当复杂的数字相机,望远镜内部是30个电荷耦合器件(CCD)探测器。 | 斯隆望远镜 |
开普勒望远镜:由德国科学家约翰内斯·开普勒(Johannes Kepler)于1611年发明。 | 开普勒望远镜 |
阿雷西博望远镜:世界上最大的单面口径射电望远镜,直径达305米,后扩建为350米,由康奈尔大学管理。 | 阿雷西博望远镜 |
卡塞格林望远镜:由两块反射镜组成的一种反射望远镜,1672年为卡塞格林所发明。 |