选择特殊符号
选择搜索类型
请输入搜索
作者
中华人民共和国国家质量监督检验检疫总局 中国国家标准化管理委员会
一般单根是硬铜线,多股是软铜线。 硬圆铜线:代号TY,由铜杆拉丝后直接而得,直流电阻率较大(不大于0.01796 p20 Ωmm2/m),延伸率较差(不...
一般单根是硬铜线,多股是软铜线。 硬圆铜线:代号TY,由铜杆拉丝后直接而得,直流电阻率较大(不大于0.01796 p20 Ωmm2/m),延伸率较差(不小于0.6%)。 软圆铜线:代号TR,由铜杆、硬...
湖州新得意特种电磁线有限公司单晶铜线价格是47元 镇江云锦电气有限公司单晶铜线价格是36元 东莞市银晨电子科技有限公司单晶铜线价格是38元 网上报价 ...
镀锡圆铜线
镀 锡 圆 铜 线 Tinned round copper wire 1985-01-31发布 1985-12-01实施 国 家 标 准 局 批准 中华人民共和国家标准 UDC 621.315.51 镀 锡 圆 铜 线 GB 4910-85 Tinned round copper wire 1 适用范 围 本标准 适用制造电 线电缆 及电器 制品 用的镀 锡软 圆铜线。简 称镀锡 铜 线。 2 采用的 标准 a.GB 4909-85 《裸 电线试 验方法 》 b.GB 3953-83 《电 工圆铜 线》 c.GB 728-65 《锡 分类和技 术条件 》 d.GB 3048-83 《电 线电缆 电性能试 验方法 》 3 型号 3.1 镀锡铜 线的型 号如 表1。 表1 型号 名称 TXP TXPH 镀锡软圆 线 可焊镀锡 软圆线 3.2 表示 方法 镀锡 铜线用型号 、规格
随着电子产品小型化、数字化、高频化和多功能化等的快速发展与进步,作为电子产品中电气的互连件—PCB中的导线的作用,已不仅只是电流流通与否的问题,而且是作为“传输线”的作用。也就是说,对于高频信号或高速数字信号的传输用的PCB之电气测试,不仅要测试线路的“通”、“断”、“短路”等是否合乎要求,而且还要其“特性阻抗值”是否合乎要求,只有这两方面都“合格”了,PCB才符合允收性。
1、信号传输线的提出
1.1 信号传输线的定义
这是为了区别常规导线而提出的名称。按IPC-2141的3.4.4条的定义:“当信号在PCB导线中传输时,若导线的长度接近信号波长的1/7,此时的导线便成为信号传输线”了。有的文献认为,导线的长度接近波长的1/10时,应按信号传输线处理。显然,后者更严格(显得‘过分’),但大多数人认定为前者。
大家知道,电流通过导体时,会受到一个“阻力”,在直流电中是电阻,符合欧姆定律。即:
R=V/I
在交流电中的“阻力”是由“电阻”、“感抗”和“容抗”的综合结果,即:
Z=〔R2+(XL-XC)2〕1/2
1.2 信号传输线的判断
元件有很高频率信号传输,但经过导线传输后,频率下降(时间延迟)了,导线越长,时间延长越厉害,当导线的长度接近于波长时,或信号速度(频率)提高到某一范围时,传输的信号便会出现明显的“失真”。
⑴高频信号的传输。
假设:(一)元件的信号传输频率f=10MHZ,导线L=50cm,则
C=f*λ
λ= C/f
λ/L= C/f*L=60
属于常规导线。
(二)元件的信号传输频率f=1GHZ,导线的长度L=10cm,则
λ/L= C/f*L=3
不属于常规导线,应进行特性阻抗值控制的传输线。
⑵脉冲信号的传输。在数字电路中从“0”到“1”的上升时间tr是很短的.但可用下面公式来计算频率fmax:
fmax=0.35/tr
假设:元件的上升时间tr是=2ns,则
fmax=0.35/tr=175 MHZ
L= C/ fmax*7=24.5 cm
当导线长度≥24.5 cm时,应作为信号传输线处理。
目前:TTL(transister-transister logic)的tr为4ns→1ns→0.5ns→
ECL(emitter-coupled logic) 的tr为3ns→1ns→0.5ns→
⑶信号传输线必须进行特性阻抗值控制。
如果不进行特性阻抗值控制时,在线路中产生的信号“反射”,会“抵消”正在传输信号。λ/L比率越小,“反射”越严重,则会产生如下问题:
①信号(或能量)传输效率明显下降;
②由于反复干扰(抵消)信号传输,将随着频率增加而严重化;
③部分“能量”是会以电磁波辐射出去,在内部导线或网络之间形成EMI。
1.3、信号普通线与信号传输线的差别
信号普通线与信号传输线的差别主要有三个方面:
⑴信号普通线是指第一信号传输被接受完成后,才发送第二个信号,因此第一个信号传输过程中的“反射”信号,不会抵消第二个信号。而信号传输线的特征是第一个信号传输还没有被接受,就发送第二个信号,因此第一信号传输过程中产生的“反射”信号就可抵消第二个信号而削弱了第二个信号,频率越快的传输信号,则“失真”就越多,甚至信号消失。
⑵信号普通线,由于信号传输速度慢,“反射”信号不会抵消后面传输的信号。因此,导线的粗细、缺陷(缺口、针孔)等是允许某些程度存在着。而在信号传输线中,这些粗细、缺陷等要进行十分严格的要求。
⑶信号普通线,不要求特性阻抗值控制,只要求“通”、“断”、“短路”的电气测试。而信号传输线要求特性阻抗值控制,即除了要求“通”、“断”、“短路”的电气测试外,还必须有特性阻抗值控制的测试。
2、PCB中特性阻抗值Z0的设计
2.1、Z0的的结构类型与计算方法
主要有两种:微带线和带状线及其派生的各种各样的结构,如何选用,应视元件和电子产品而定。
微带线(适合Z0较大的场合)。
Z0 ={87/(εr+1.41)1/2 }ln{5.98H/(0.8W+T)}
带状线(适合Z0较小的场合)。
Z0 =60ln{4D/[0.67π(0.8W+T) ]}
公式中的D为介质量层厚度。
2.2、微带线的的结构与计算方法
根据信号传输线的不同位置可以形成各种各样的结构及其计算方法(参见《现代印制电路基础》一书第十四章)。
2.3、特性阻抗值Z0的一般设计规则
⑴选用合适的基板(CCL)材料和PCB结构,确定信号传输线的长度等以确定PCB尺寸。
⑵合理的布局与布线,使每组(网络)导线的特性阻抗值Z0与元(组)件的特性阻抗值相匹配。
⑶应考虑基板材料品质的不稳定波动、PCB制造过程的偏差与控制和PCB设计的因素等带来在PCB中特性阻抗值Z0偏差的补救与修正的措施和办法。
3、信号传输线的布设
3.1信号传输线的长度越短越好
根据信号“传输线”的定义,信号线布设得很短,使其长度小于1/7传输信号波长,便可消除传输信号被“反射”信号而削弱问题。或者说,信号线布设,其长度短到小于1/7传输信号波长,则其布设的导线便可按普通线处理。
如何使信号线布设得更短呢!除了高频的元件合理布设外,应在PCB板上的互连结构上下工夫,如采用埋/盲孔、盘内孔(hole in pad)、叠孔和HDI/BUM等结构来缩短走线。
3.2、高密度布线,介质层越薄,串扰越小
介质层越厚,电磁交叉感应越强,串扰越严重!
介质层要薄,必须选择低εr材料。
3.3、采用非平行走线
密集的平行走线将带来更大的电感与电容,从而产生更大的串扰,也是产生杂音的
原因之一。应采用:
⑴相邻的导线层之间互为直角布设;
⑵同一层上采用阶梯式斜向(45度)布设;
⑶通过导通孔的绞线布设。
3.4、采用差分传输线
采用差分传输线可以明显减小传输线的干扰,这在高频和高速数字的信号传输中非常重要。
⑴差分传输线可以明显减小传输线中信号的干扰,提高传输信号的完整性,这是PCB设计者所熟悉的。但是,不同差分传输线减小干扰信号的程度是不同的。为了减小对传输信号的“共模”干扰,采用的差分传输线,主要应做到如下四个 :
(一)形状和长度相同,做到“共模”拐角,即不要使形状和长度不相同而引起“共模”干扰;
(二)由直角改为45度角,实验表明,其“共模”干扰可降低50%;
(三)采用补偿 电容,如在 拐角的短线加一个合适的电容,可降低干扰;
(四)形成双绞方式差分传输线。
⑵双绞差分传输线。采用通孔在不同层之间来形成双绞差分传输线是目前最有效地降低干扰信号的方法。
①有偏位(移)双绞差分传输线。又可称为常规双绞差分传输线。
②没有偏位(移)双绞差分传输线。可获得较好的降低信号干扰。
4、特性阻抗值Z0对基板(CCL)材料的要求
从Z0 ={87/(εr+1.41)1/2 }ln{5.98H/(0.8W+T)}公式中可以看出:影响特性阻抗值Z0的主要因素:
(一)介电常数εr;
(二)介质层厚度H;
(三)信号传输线的宽度W;
(四)信号传输线的厚度。这些表明:特性阻抗值Z0与基板材料是息息相关着。实验也表明,影响特性阻抗值Z0从大到小是9(二)、(三)、(一)、(四)顺序排列的。
4.1介电常数εr对特性阻抗值Z0的影响
⑴介电常数εr影响着信号的传输速度。
信号的传输速度是随着介电常数εr的增加而下降。根据电磁波理论中的马克斯威尔公式,即: Vs=c/(εr)1/2
表1
⑵介电常数εr的大小是复合材料的“加权和”。这就是说,介电常数εr的大小是与介质层的组成、结构(复合组成与结构)有关。如FR-4材料中,由于采用E-玻纤布的结构(如7628、2116、1080、106等)不同,其树脂含量是不同的,因此,其介电常数εr值是不一样的。对于严格控制特性阻抗值Z0来说,PCB设计和制造都应该了解和加以计算,才能获得更精准的控制与结果。
⑶εr值变动的大小比其它因素影响大,位居第三位。介电常数εr对特性阻抗值Z0的影响可以从Z0的公式中看出来:
Z0 ={87/(εr+1.41)1/2 }ln{5.98H/(0.8W+T)}
显然,介电常数εr值越小,Z0值越大,εr值变动的大小影响大,应加以认真控制。
4.2、介质厚度对特性阻抗值Z0的影响
⑴从Z0的公式中可看出,Z0的值是与介质厚度H的自然对数成正比的。
⑵在相同的厚度下,微带线有较大的Z0值。
⑶厚度偏差对Z0值的影响是处于第一位的,因此必须很好控制介质层的厚度。但由于厚度偏差主要是由CCL制造商,其次是PCB制造者(多层压板)来控制的,一般偏差可控制在较小的范围内。
4.3、导线厚度对特性阻抗值Z0的影响
⑴从Z0的公式中可看出,Z0的值是随着导线厚度T的减少而增加着。
⑵在相同的厚度下,微带线有较大的Z0值。
⑶厚度偏差对Z0值的影响是最小的。
4.4、导线宽度对特性阻抗值Z0的影响
⑴从Z0的公式中可看出,Z0的值是随着导线宽度W的下降而增加。
①计算与实验表明,导线宽度W对特性阻抗值Z0的影响是最大的。
②导线宽度W是PCB生产最难控制的,也是最需要进行控制的。
⑵导线宽度偏差控制的意义。
导线宽度偏差控制的意义,在某种程度上是控制了PCB(OEM设计)的特性阻抗值Z0的范围。因为选定CCL材料和完成PCB设计之后,这意味着:
①介电常数εr值、介质厚度H值和导线厚度T值等基本不变,或变动不大;
②导线宽度偏差最大,也最难控制,因为制造过程长、影响多。
③导线较长又是用来传输信号的,导线宽度偏差是影响特性阻抗值Z0的最大因素。
所以,导线宽度偏差值的控制是当今HDI/BUM板的关键技术。
⑶导线宽度偏差的控制。
①导线宽度尺寸的迅速缩小,其控制越难,属于“精细”节距的控制。
②常规的图形转移技术越来越不能满足精细导线的要求了。
③激光直接成像技术是目前最好的制造精细导线的选择。
5、特性阻抗值Z0的测试
5.1、特性阻抗的测试样板
特性阻抗的测试样板可按IEC 61188-1-2规定进行。IPC-D-275(四种电路板传输线),IPC-D-317(高速电路板设计规范中传输线的种类)和IPC-TM-650等也作了规定。
5.2、特性阻抗的测试仪
目前是以英国Polar公司生产的特性阻抗测试仪。它是由时域反射计(TDR)、台式计算机和特制的附有1米长电缆测试探头以及待测的样板(或互连板)等组成。
特性阻抗的测试原理是由时域反射计(TDR)向印制板发射出一个信号电压(高频信号或高速脉冲信号的电压),测量出反射回来的电压变化,然后通过PC计算并输出特性阻抗值Z0来。
计算公式:Z0 =Z参V线/(V参-V线)
5.3、AOI对特性阻抗值的控制
5.4、由于导线制造的完整性(尺寸偏差)在特性阻抗值的控制中的重要性,越来越走向精细化。采用“目检”已经不能胜任,而随着AOI的不断改进与完善,采用AOI技术来控制精细导线已经成为现实,虽然不能完全取代特性阻抗的测试,但是,可以提高PCB的生产率(合格率),进一步达到控制特性阻抗值的目的。
ASI(Actuator-Sensor Interface)是用于在控制器(主站)和传感器/执行器(从站)之间进行双向、多站点数字通信的总线网络,它由主站、从站、传输系统3部分组成,而传输系统又由两芯传输电缆、ASI电源和数据解耦电路构成。
ASI总线推荐使用的电缆型号为CENELEC或DIN VDE 0281[CENE-90],并且要标明HO5VV-F2x1.5,这是一种两芯、横截面积为1.5mm2的柔性电源线,它既便宜又随处可见。另一种是具有相同电特性的ASI专用扁平电缆,它在安装上非常方便。因为ASI电缆既要传输信号又是要提供电源,所以在选择电缆时必须注意两个方面的技术指标:第一是通信频谱特性,第二是直流阻抗特性。在认为有较大干扰的情况下,则需要选择使用屏蔽电缆,如型号为(N)YMHCY-02x1.5的电缆,但它也必须满足规定的频谱特性要求。特别要注意的是屏蔽层在ASI电源端只能接地,而不能接在ASI+和ASI-端。
ASI电源的电压为29.51-31.5VDC,每个从站向传感器/执行器提供的电源电压VDC(+10[%]或-15[%])。在一个ASI总线系统中,ASI电源可给31个从站提供的最大电流为2A,因此每个从站平均消耗的电流为65mA。如果从站带动的执行器功率较大,所需电流大于65mA时,则必须外接辅助电源。整个系统允许在ASI电缆上的最大压降为3V,因此电缆的横截面积不能小于1.5mm2,这样才能保证网络中每个从站都能得到规定的电压值。
ASI电缆的等效电路模型,分为两芯电缆和带屏蔽层两芯电缆两种模型。电阻(R')、电容(C')、电感(L')和电导(G')值为ASI电缆的等效参数。传输速率为167Kb/s时,两芯电缆总的极限参数范围为:R'=20-50mΩ/m,L'=200-600nH/m,C'=35-70pF/m,G'=1-3μS/m。在同样的传输速率下,带屏蔽层的两芯电缆的极限参数为:R's=10mΩ/m,Ls'=800nH/m,Cs'=300pF/m,Gs'=15μS/m。
ASI电缆的复数阻抗与传输速率之间的关系对系统的响应特性具有十分重要的意义。在传输速率为167Kb/s时,阻抗为80-120Ω,而低于或高于167Kb/s时,阻抗会迅速下降,因此当采用167Kb/s的传输速率时,将得到最大的信号幅值。
ASI信号在传输前要进行调制,采用什么调制方法要考虑诸多的因素。例如附加在电源电压上的传输信号必须是交变的;主站和从站之间的双向通信要求双主都能够产生简单、有效和节省时间的窄带传输信号;使用非屏蔽电缆时不应有太多的干扰等等。ASI信号的调制采用交变脉冲调制方式(APM),这是一种在基频进行调制的串行通信方式。
主站发出的请求信号位序列首先转换为能执行相位变换的位序列,即曼彻斯特II编码,这样就产生了相应的传输电流。当传输电流通过电感元件时会产生电压突变,就产生了请求信号电压。每一个增加的电流产生一个负电压脉冲,而每一个减小的电流产生一个正电压脉冲,通过这种方法从站很容易得到请求信号。因为信号是叠加在电源上的,所以信号电压有时会大于从站的电源电压。在从站内并不需要电感元件,这就使得智能型传感器/执行器上的带有Slave Chip元件的一体化从站电路更小、更简单、更经济。在从站中接收电缆上的请求信号电压并转化为初始的位序列,就完成了一次主站向从站的请求信号的转换过程。
信号传输的电压脉冲被设计成正弦平方波方式,但要考虑到低频干扰的影响,通过选择合适的传输波形可以提高可靠性。经过这种调制后的信号在规定的拓扑结构中,每两位脉冲信号的间隔只有6μs。
ASI电源和与之相连的数据解耦电路,ASI电源可以提供29.5-31.6VDC电压,完全满足国际电工委员会(IEC)对安全隔离低电压的技术要求,并具有可靠的短路过载保护。数据解耦电路由两个50μH的电感和两个39Ω的电阻相互并联组成,通过电感可以将传输信号的电流脉冲转变为电压脉冲,同时它还具有防止数据传输频率信号经过电源而造成短路的作用,两个电阻代表了网络的边界终端。为使电路信号噪声最低,必须采用高对称性的电路结构,两个电容CE和两个电感L应完全相等,接地点要可靠接地,若采用屏蔽电缆,屏蔽层也应接到地上。如果2A电流仍不能满足从站的要求,就必须采用带有辅助电源的从站模式或使用带有附加电源的中继器。
ASI总线系统为主从结构,采用请求-应答的访问方式。主站先发出一个请求信号,信号中包括从站的地址。接到请求的从站会在规定的时间内给予应答,在任何时间只有1个主站和最多31个从站进行通信。一般访问方式有两种:一种是带有令牌传递的多主机访问方式;另一种是CSMA/CD方式,它带有优先级选择和帧传输过程。而ASI的访问方式比较简单,为了降低从站的费用、提高灵活性,一方面在不增加传输周期的条件下尽量包括更多的参数和信息,另一方面传输周期的时间应能自动调整,例如系统中只有6个从站时,传输周期为1ms,而有31个从站时周期约为5ms。如果在网上有短暂的干扰时,主站没有收到从站的应答信号或收到的是错误无效的信号时,主站可以重发信息而无需重复整个传输周期。
ASI总线的总传输速率为167Kb/s,它包括所有功能上必要的暂停。允许的网络传输速率为53.3Kb/s,从这一点看它的传输效率为32[%],与其它现场总线系统相比,这个数值较好。但在电磁干扰的环境下应采取进一步措施,以保证数据传输的可靠性。
一个ASI报文由主站请求、主站暂停、从站应答和从站暂停4个环节组成。所有的主站请求都是14位,从站应答为7位,每一位的时间长度为6μs。主站暂停最少为3位,最多为10位。如果从站是同步的话,在主站3位暂停后从站就可以发送应答信号。如果不是同步信号,那么从站就必须在5位暂停后发送应答信号,因为在这段时间内从站会在接收到完整有效的请求信号后监测主站的暂停情况,看看是否还会有其它信息。但是如果主站在10个暂停位后没有接收到从站的应答信号的起始位,主站会认为不再有应答信号而发出下一个地址的请求信号。从站的暂停只有1位或2位的时间。
在ASI报文中主站请求由以下具体信息组成:
ST 起始位 主站请求开始,0为有效,1为无效。
SR 控制位 数据/参数/地址位或命令位,0为数据/参数/地址位,1为命令位。
A0~A4 从站地址位 被访问的从站地址(5位)。
I0~I4 信息位 要传输的信息(5位),请求类型。
PB 奇偶校验位 在主站请求信息中不包括结束位为1的各位总和必须是偶数。
EB 结束位 请求结束,0为无效,1为有效。
在ASI报文中从站应答由以下具体信息组成:
ST 起始位 从站应答开始,0为有效,1为无效。
I0~I3 信息位 要传输的信息(4位),应答类型。
PB 奇偶校验位 在从站应答信息中不包括结束位为1的各位总和必须是偶数。
EB 结束位 应答结束,0为无效,1为有效。
在ASI主从结构中,主站所发出的报文在系统数据交换中占有重要的地位。主站的请求报文共有9种:(1)数据交换 要求从站把测量数据上传给主站,而主站又可以把控制指令下达给从站。(2)写参数 设置从站功能,如传感器的测量范围、激活定时器、在多传感器系统中改变测量方法等。(3)地址分配 只有当从站地址为00H时才有效。从站接到这个请求后,用06H回答,表示已收到了主站的正确请求,从站从此就可以在这个新地址被呼叫了,同时把这个新地址存储在从站的EEPROM中,这个过程大约需要15ms。这种方式使主站可以对运行中损坏后重新置换的从站自动进行原有地址的设置。(4)复位 把被呼叫的从站地址恢复到初始状态,从站用06H回答,整个过程需2ms。(5)删除操作地址 暂时把被呼叫的从站地址改为00H,这个报文一般和"地址分配"报文一起使用。当新地址确定后,从站用06H回答。如果使用指令"Reset-ASI-Slave"就可以恢复原地址。(6)读I/O配置。(7)读ID编码 从站的I/O设置和ID编码在出厂时已经确定,不能改变。(6)、(7)结合使用的目的是确定从站的身份。(8)状态读取 读取从站状态缓冲器中的4个数据位,以获得在寻址和复位过程中出现的错误信息。(9)读出状态和状态删除 读出从站状态缓冲器的内容,然后删除。
在以上9种主站请求报文中,数据和参数的传输有两种,设置和改变从站地址的有两种,对从站进行识别和查询的有5种。表1列出的是主站9种报文的名称和内容。
如果在非屏蔽电缆上进行高速ASI传输通信,那么电磁兼容性(EMC)问题就非常重要了。发射干扰和现场的场强辐射干扰都不应超过欧洲标准EN55011给出极限值,ASI系统的抗干扰能力在IEC801文件中已有详细的说明。大量的ASI系统测试数据表明,由于传输信号采用了正弦平方波,因此ASI系统的发射干扰保持在IEC的规定值以下。ASI系统对于静态放电在26M-1GHz频率范围内的电磁高速瞬间干扰的抵抗能力可达到3级。在最坏的情况下,通信将出现故障,但系统具有检测功能并可以对报文进行重发。因为是短信息,重发不会增加周期时间,只有在报文发生严重错误时,才会增加报文的周期长度。当位传输错误率在70b/s时,系统周期大约为5ms;如果错误率再高一点,周期时间变化不大,ASI仍能保持它所有的功能。只有误差超过5000b/s时,正常的数据传输才难以维持。
当ASI电缆被切断时(如错误短接或故障断开),主站将不能访问位于断点另一侧的从站,而位于主站一侧的从站仍可以被主站呼叫。通过管理服务程序主站能够诊断和发出故障信号,但前提是数据解耦电路和电源这时应在同一侧,否则系统就会完全瘫痪。如果在ASI系统中没有使用中继器,那么当电源发生故障时,ASI系统将停止工作,有关故障的信息也不会得到。但如果使用了中继器,因中继器可以向网络供电,那么电源故障的影响就会减小,系统将维持部分功能。
ASI总线的传输系统是连接网络系统中主站、从站、电源、控制器、传感器/执行器的通路和桥梁。报文信号在传输系统中要经过多次的变换和恢复,并要抵抗各种外界的干扰以保证准确、快捷、可靠的信息交换,它是ASI总线系统中重要的组成部分。
前言:
传输视频信号的线缆有哪些?他们的应用有哪些?他们传输的距离有多远?在实际应用中应该怎么选择?
正文:
一、视频信号接口
监控视频线种类介绍:
按照材料区分有SYV及SYWV两种,绝缘层的物理材料结构不同,SYV是实心聚乙烯电缆,SYWV是高物理发泡电缆,物理发泡电缆传输性能优于聚乙烯。
S--同轴电缆 Y--聚乙烯 V--聚氯乙烯 W--稳定聚乙烯
按照阻抗可分为SYV 50-XX SYV 75-XXSYV-100 XX XX代表绝缘层外径。
1.复合视频信号:一般接头为BNC、RCA(莲花头)
75代表抗阻性,后面的3和5代表它的绝缘外径(3mm/5mm)。
SYV中S---同轴射频电缆,Y---聚乙烯,V---聚氯乙烯.
SYV75-3传输在200米之内效果好.
SYV75-5传输在500米内效果更好.
视频线分
75-3(约200米) 传输距离
75-5(约500米) 传输距离
75-7(约500--800米) 传速距离
75-9(约1000---1500米) 传速距离
75-12(约2000----3500米) 传速距离
2.S-端子(或称 Y/C)
它的学名叫做“二分量视频接口”,俗称S端子
传输距离短 15米
S-Video连接规格是由日本人开发的一种规格,S指的是“SEPARATE(分离)”,它将亮度和色度分离输出,避免了混合视讯讯号输出时亮度和色度的相互干扰。S接口实际上是一种五芯接口,由两路视亮度信号、两路视频色度信号和一路公共屏蔽地线共五条芯线组成。
同AV接口相比,由于它不再进行Y/C混合传输,因此也就无需再进行亮色分离和解码工作,而且使用各自独立的传输通道在很大程度上避免了视频设备内信号串扰而产生的图像失真,极大地提高了图像的清晰度。但S-Video仍要将两路色差信号(Cr Cb)混合为一路色度信号C,进行传输然后再在显示设备内解码为Cb和Cr进行处理,这样多少仍会带来一定信号损失而产生失真(这种失真很小但在严格的广播级视频设备下进行测试时仍能发现)。而且由于Cr Cb的混合导致色度信号的带宽也有一定的限制,所以S-Video虽然已经比较优秀,但离完美还相去甚远。S-Video虽不是最好的,但考虑到目前的市场状况和综合成本等其它因素,它还是应用最普遍的视频接口之一。
3. VGA信号
VGA(Video Graphics Array)是IBM在1987年随PS/2机一起推出的一种视频传输标准,具有分辨率高、显示速率快、颜色丰富等优点,在彩色显示器领域得到了广泛的应用。
频率高
易衰减,传输距离短
易受干扰
3+4/6VGA 15-30M
4. 分量视频(RGBHV 信号)
色差接口是在S接口的基础上,把色度(C)信号里的蓝色差(b)、红色差(r)分开发送,其分辨率可达到600线以上。它通常采用YPbPr和YCbCr两种标识,前者表示逐行扫描色差输出,后者表示隔行扫描色差输出。现在很多电视类产品都是靠色差输入来提高输入讯号品质,而且透过色差接口,可以输入多种等级讯号,从最基本的480i到倍频扫描的480p,甚至720p、1080i等等,都是要通过色差输入才有办法将信号传送到电视当中。
75-2RGB 30-50M
75-3RGB 50-70M
5. DVI
◎DVI-A(Analog,模拟)接口:这种接口实际上就是VGA接口的变形,以前多用于一些高端CRT显示器上,不过现在已经基本淘汰。我们常说的“假DVI接口”就是指的DVI-A,原因在于它传输的依然是模拟信号,而不是体现出DVI技术优势的数字信号。
◎DVI-D(Digital,数字)接口:DVI-D是真正意义上的数字信号接口,这是它比DVI-A更先进的地方;不过DVI-D接口也有不足,那就是用户使用该接口时无法兼容老式的CRT显示器,如果碰巧液晶显示器上也只有D-Sub接口,那用户就只有干瞪眼的份儿了。
◎DVI-I(Integrated,集成)接口:这是一种集DVI-A和DVI-D大成于一身的混合式接口,它既可以兼容DVI-D又可以兼容DVI-A(通过转接头还可以转接为D-Sub),是目前兼容性最好的DVI接口
一般来说,在传输1600×1200@60Hz以下的视频信号时,使用单通道DVI和双通道DVI没有明显的差别。如果你的显示器可以支持Full HD(1920×1080)或以上的分辨率,就不要选择单通道的DVI数据线了。
DVI-D:只能接收数字信号
DVI-I:能同时接收数字信号和模拟信号
传输距离短 7-15M
6.HDMI
使用与DVI数字信号相同的底层协议,所以还可以通过转接头与DVI信号实现互换,兼容DVI信号。比DVI接口更强大的是,HDMI在制定通讯协议的时候,允许通过HDMI线缆实现高保真音频信号的传输,无缝化连接减少了连线的麻烦,也让HDMI具有更广泛的兼容性。
支持5Gbps的数据传输率,最远可传输15米
与DVI相比,HDMI可以传输数字音频信号,并增加了对HDCP的支持,同时提供了更好的DDC可选功能。HDMI支持5Gbps的数据传输率,最远可传输15米,足以应付一个1080p的视频和一个8声道的音频信号。而因为一个1080p的视频和一个8声道的音频信号需求少于4GB/s,因此HDMI还有很大余量。这允许它可以用一个电缆分别连接DVD播放器,接收器和PRR。此外HDMI支持EDID、DDC2B,因此具有HDMI的设备具有“即插即用”的特点,信号源和显示设备之间会自动进行“协商”,自动选择最合适的视频/音频格式。
6.SDI
SDI(serial digital interface)是"数字分量串行接口"。那么HD-SDI就是高清数字分量串行接口。HD-SDI是实时无压缩的高清广电级摄像机,是安防监控领域的又一科技进步,为监控中心提供高清晰的图像来源的设备。
二、控制信号
常见控制信号,RS232、RS422、RS485、IR、CR-NET(CREATOR控制信号)
ⅰRS232 传输速率较低,在异步传输时,波特率为20Kbps,接口使用一根信号线和一根信号返回线而构成共地的传输形式, 这种共地传输容易产生共模干扰,所以抗噪声干扰性弱。传输距离15米~20米。采用150pF/m的通信电缆时,最大通信距离为15m;若每米电缆的电容量减小,通信距离可以增加。传输距离短的另一原因是RS-232属单端信号传送,存在共地噪声和不能抑制共模干扰等问题,因此一般用于20m以内的通信。
ⅱRS-422是差模传输,抗干扰能力强,能传1200米,最大传输速率为10Mb/s。其平衡双绞线的长度与传输速率成反比,在100kb/s速率以下,才可能达到最大传输距离。只有在很短的距离下才能获得最高速率传输。一般100米长的双绞线上所能获得的最大传输速率仅为1Mb/s。
ⅲ RS-485最大的通信距离约为1219米,数据最高传输速率为10Mbps ,RS-485接口是采用平衡驱动器和差分接收器的组合,抗共模干能力增强,即抗噪声干扰性好。
ⅳ IR红外(CREATOR中控红外口)传输距离150米。
ⅴ CR-NET(CREATOR控制信号) 传输距离800米。