选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

压电材料

压电材料是受到压力作用时会在两端面间出现电压的晶体材料。

压电材料材料分类

压电材料无机压电材料

分为压电晶体和压电陶瓷,压电晶体一般是指压电单晶体;压电陶瓷则泛指压电多晶体。压电陶瓷是指用必要成份的原料进行混合、成型、高温烧结,由粉粒之间的固相反应和烧结过程而获得的微细晶粒无规则集合而成的多晶体。具有压电性的陶瓷称压电陶瓷,实际上也是铁电陶瓷。在这种陶瓷的晶粒之中存在铁电畴,铁电畴由自发极化方向反向平行的180 畴和自发极化方向互相垂直的90畴组成,这些电畴在人工极化(施加强直流电场)条件下,自发极化依外电场方向充分排列并在撤消外电场后保持剩余极化强度,因此具有宏观压电性。如:钛酸钡BT、锆钛酸铅PZT、改性锆钛酸铅、偏铌酸铅、铌酸铅钡锂PBLN、改性钛酸铅PT等。这类材料的研制成功,促进了声换能器,压电传感器的各种压电器件性能的改善和提高。

压电晶体一般指压电单晶体,是指按晶体空间点阵长程有序生长而成的晶体。这种晶体结构无对称中心,因此具有压电性。如水晶(石英晶体)、镓酸锂、锗酸锂、锗酸钛以及铁晶体管铌酸锂、钽酸锂等。

相比较而言,压电陶瓷压电性强、介电常数高、可以加工成任意形状,但机械品质因子较低、电损耗较大、稳定性差,因而适合于大功率换能器和宽带滤波器等应用,但对高频、高稳定应用不理想。石英等压电单晶压电性弱,介电常数很低,受切型限制存在尺寸局限,但稳定性很高,机械品质因子高,多用来作标准频率控制的振子、高选择性(多属高频狭带通)的滤波器以及高频、高温超声换能器等。由于铌镁酸铅Pb(Mg1/3Nb2/3)O3单晶体(Kp ≥90%, d33≥900×10-3C/N, ε≥20,000)性能特异,国内外上都开始这种材料的研究,但由于其居里点太低,离使用化尚有一段距离。

压电材料有机压电材料

又称压电聚合物,如聚偏氟乙烯(PVDF)(薄膜)及以它为代表的其他有机压电(薄膜)材料。这类材料及其材质柔韧,低密度,低阻抗和高压电电压常数(g)等优点为世人瞩目,且发展十分迅速,水声超声测量,压力传感,引燃引爆等方面获得应用。不足之处是压电应变常数(d)偏低,使之作为有源发射换能器受到很大的限制。第三类是复合压电材料,这类材料是在有机聚合物基底材料中嵌入片状、棒状、杆状、或粉末状压电材料构成的。至今已在水声、电声、超声、医学等领域得到广泛的应用。如果它制成水声换能器,不仅具有高的静水压响应速率,而且耐冲击,不易受损且可用与不同的深度。

查看详情

压电材料造价信息

  • 市场价
  • 信息价
  • 询价

彩色纳米无机聚合物透水路面材料

  • 透水混凝土C20,细粒(03-05mm);1立方=1.8吨
  • t
  • 蛇口建安
  • 13%
  • 深圳市蛇口建筑安装工程有限公司
  • 2022-12-06
查看价格

彩色纳米无机聚合物透水路面材料

  • 透水混凝土C25,细粒(03-05mm);1立方=1.8吨
  • t
  • 蛇口建安
  • 13%
  • 深圳市蛇口建筑安装工程有限公司
  • 2022-12-06
查看价格

彩色纳米无机聚合物透水路面材料

  • 透水混凝土C30,细粒(03-05mm);1立方=1.8吨
  • t
  • 蛇口建安
  • 13%
  • 深圳市蛇口建筑安装工程有限公司
  • 2022-12-06
查看价格

彩色纳米无机聚合物透水路面材料

  • 透水混凝土C20,细粒(03-05mm);1立方=1.8吨;彩色纳米无机聚合物透水混凝土路面
  • t
  • 洪发
  • 13%
  • 深圳市洪发建筑工程有限公司
  • 2022-12-06
查看价格

彩色纳米无机聚合物透水路面材料

  • 透水混凝土C25,细粒(03-05mm);1立方=1.8吨;彩色纳米无机聚合物透水混凝土路面
  • t
  • 洪发
  • 13%
  • 深圳市洪发建筑工程有限公司
  • 2022-12-06
查看价格

  • kW·h
  • 梅州市大埔县2022年2季度信息价
  • 建筑工程
查看价格

  • kW·h
  • 梅州市蕉岭县2022年2季度信息价
  • 建筑工程
查看价格

  • kW·h
  • 梅州市大埔县2022年1季度信息价
  • 建筑工程
查看价格

  • kW·h
  • 梅州市蕉岭县2022年1季度信息价
  • 建筑工程
查看价格

  • kW·h
  • 梅州市大埔县2021年3季度信息价
  • 建筑工程
查看价格

压电陶瓷

  • 按压下透明机械装置,观看结果以及了解压电陶瓷工作原理.
  • 1项
  • 1
  • 中高档
  • 不含税费 | 含运费
  • 2022-10-24
查看价格

压电陶瓷

  • 按压下透明机械装置,观看结果以及了解压电陶瓷工作原理.
  • 1项
  • 1
  • 中档
  • 不含税费 | 含运费
  • 2022-08-15
查看价格

压电陶瓷

  • 按压下透明机械装置,观看结果以及了解压电陶瓷工作原理.
  • 1项
  • 1
  • 中高档
  • 不含税费 | 含运费
  • 2022-09-16
查看价格

压电陶瓷

  • 按压下透明机械装置,观看结果以及了解压电陶瓷工作原理.
  • 1项
  • 1
  • 高档
  • 不含税费 | 含运费
  • 2022-09-14
查看价格

路口稳压电

  • 路口稳压电
  • 1套
  • 3
  • 中高档
  • 含税费 | 含运费
  • 2022-11-03
查看价格

压电材料材料应用

压电材料的应用领域可以粗略分为两大类:即振动能和超声振动能-电能换能器应用,包括电声换能器,水声换能器和超声换能器等,以及其它传感器和驱动器应用。

压电材料换能器

换能器是将机械振动转变为电信号或在电场驱动下产生机械振动的器件压电聚合物电声器件利用了聚合物的横向压电效应,而换能器设计则利用了聚合物压电双晶片或压电单晶片在外电场驱动下的弯曲振动,利用上述原理可生产电声器件如麦克风、立体声耳机和高频扬声器。对压电聚合物电声器件的研究主要集中在利用压电聚合物的特点,研制运用其它现行技术难以实现的、而且具有特殊电声功能的器件,如抗噪声电话、宽带超声信号发射系统等。

压电聚合物水声换能器研究初期均瞄准军事应用,如用于水下探测的大面积传感器阵列和监视系统等,随后应用领域逐渐拓展到地球物理探测、声波测试设备等方面。为满足特定要求而开发的各种原型水声器件,采用了不同类型和形状的压电聚合物材料,如薄片、薄板、叠片、圆筒和同轴线等,以充分发挥压电聚合物高弹性、低密度、易于制备为大和小不同截面的元件、而且声阻抗与水数量级相同等特点,最后一个特点使得由压电聚合物制备的水听器可以放置在被测声场中,感知声场内的声压,且不致由于其自身存在使被测声场受到扰动。而聚合物的高弹性则可减小水听器件内的瞬态振荡,从而进一步增强压电聚合物水听器的性能。

压电聚合物换能器在生物医学传感器领域,尤其是超声成像中,获得了最为成功的应用、PVDF薄膜优异的柔韧性和成型性,使其易于应用到许多传感器产品中。

压电材料驱动器

压电驱动器利用逆压电效应,将电能转变为机械能或机械运动,聚合物驱动器主要以聚合物双晶片作为基础,包括利用横向效应和纵向效应两种方式,基于聚合物双晶片开展的驱动器应用研究包括显示器件控制、微位移产生系统等。要使这些创造性设想获得实际应用,还需要进行大量研究。电子束辐照P(VDF-TrFE)共聚合物使该材料具备了产生大伸缩应变的能力,从而为研制新型聚合物驱动器创造了有利条件。在潜在国防应用前景的推动下,利用辐照改性共聚物制备全高分子材料水声发射装置的研究,在美国军方的大力支持下正在系统地进行之中。除此之外,利用辐照改性共聚物的优异特性,研究开发其在医学超声、减振降噪等领域应用,还需要进行大量的探索。

压电材料传感器

1.压电式压力传感器

压电式压力传感器是利用压电材料所具有的压电效应所制成的。压电式压力传感器的基本结构如右图所示。由于压电材料的电荷量是一定的,所以在连接时要特别注意,避免漏电。压电式压力传感器的优点是具有自生信号,输出信号大,较高的频率响应,体积小,结构坚固。其缺点是只能用于动能测量。需要特殊电缆,在受到突然振动或过大压力时,自我恢复较慢。

2.压电式加速度传感器

压电元件一般由两块压电晶片组成。在压电晶片的两个表面上镀有电极,并引出引线。在压电晶片上放置一个质量块,质量块一般采用比较大的金属钨或高比重的合金制成。然后用一硬弹簧或螺栓,螺帽对质量块预加载荷,整个组件装在一个原基座的金属壳体中。为了隔离试件的任何应变传送到压电元件上去,避免产生假信号输出,所以一般要加厚基座或选用由刚度较大的材料来制造,壳体和基座的重量差不多占传感器重量的一半。

测量时,将传感器基座与试件刚性地固定在一起。当传感器受振动力作用时,由于基座和质量块的刚度相当大,而质量块的质量相对较小,可以认为质量块的惯性很小。因此质量块经受到与基座相同的运动,并受到与加速度方向相反的惯性力的作用。这样,质量块就有一正比于加速度的应变力作用在压电晶片上。由于压电晶片具有压电效应,因此在它的两个表面上就产生交变电荷(电压),当加速度频率远低于传感器的固有频率时,传感器给输出电压与作用力成正比,亦即与试件的加速度成正比,输出电量由传感器输出端引出,输入到前置放大器后就可以用普通的测量仪器测试出试件的加速度;如果在放大器中加进适当的积分电路,就可以测试试件的振动速度或位移。

压电材料机器人

机器人安装接近觉传感器主要目的有以下三个:其一,在接触对象物体之前,获得必要的信息,为下一步运动做好准备工作;其二,探测机器人手和足的运动空间中有无障碍物。如发现有障碍,则及时采取一定措施,避免发生碰撞;其三,为获取对象物体表面形状的大致信息。

超声波是人耳听见的一种机械波,频率在20KHZ以上。人耳能听到的声音,振动频率范围只是20HZ-20000HZ。超声波因其波长较短、绕射小,而能成为声波射线并定向传播,机器人采用超声传感器的目的是用来探测周围物体的存在与测量物体的距离。一般用来探测周围环境中较大的物体,不能测量距离小于30mm的物体。

超声传感器包括超声发射器、超声接受器、定时电路和控制电路四个主要部分。它的工作原理大致是这样的:首先由超声发射器向被测物体方向发射脉冲式的超声波。发射器发出一连串超声波后即自行关闭,停止发射。同时超声接受器开始检测回声信号,定时电路也开始计时。当超声波遇到物体后,就被反射回来。等到超声接受器收到回声信号后,定时电路停止计时。此时定时电路所记录的时间,是从发射超声波开始到收到回声波信号的传播时间。

利用传播时间值,可以换算出被测物体到超声传感器之间的距离。这个换算的公式很简单,即声波传播时间的一半与声波在介质中传播速度的乘积。超声传感器整个工作过程都是在控制电路控制下顺序进行的。

压电材料除了以上用途外还有其它相当广泛的应用。如鉴频器、压电震荡器、变压器、滤波器等。

查看详情

压电材料基本介绍

受到压力作用时会在两端面间出现电压的晶体材料。1880年,法国物理学家P. 居里和J.居里兄弟发现,把重物放在石英晶体上,晶体某些表面会产生电荷,电荷量与压力成比例。这一现象被称为压电效应。随即,居里兄弟又发现了逆压电效应,即在外电场作用下压电体会产生形变。压电效应的机理是:具有压电性的晶体对称性较低,当受到外力作用发生形变时,晶胞中正负离子的相对位移使正负电荷中心不再重合,导致晶体发生宏观极化,而晶体表面电荷面密度等于极化强度在表面法向上的投影,所以压电材料受压力作用形变时两端面会出现异号电荷。反之,压电材料在电场中发生极化时,会因电荷中心的位移导致材料变形。

利用压电材料的这些特性可实现机械振动(声波)和交流电的互相转换。因而压电材料广泛用于传感器元件中,例如地震传感器,力、速度和加速度的测量元件以及电声传感器等。这类材料被广泛运用,举一个很生活化的例子,打火机的火花即运用此技术。

查看详情

压电材料常见问题

查看详情

压电材料材料原理

压电现象是100多年前居里兄弟研究石英时发现的。那么,什么是压电效应呢? 当你在点燃煤气灶或热水器时,就有一种压电陶瓷已悄悄地为你服务了一次。生产厂家在这类压电点火装置内,藏着一块压电陶瓷,当用户按下点火装置的弹簧时,传动装置就把压力施加在压电陶瓷上,使它产生很高的电压,进而将电能引向燃气的出口放电。于是,燃气就被电火花点燃了。压电陶瓷的这种功能就叫做压电效应。

压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。

压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。

查看详情

压电材料发展现状

下面介绍几种处于发展中的压电陶瓷材料和几种新的应用。

压电材料细晶粒压电陶瓷

以往的压电陶瓷是由几微米至几十微米的多畴晶粒组成的多晶材料,尺寸已不能满足需要了。减小粒径至亚微米级,可以改进材料的加工性,可将基片做地更薄,可提高阵列频率,降低换能器阵列的损耗,提高器件的机械强度,减小多层器件每层的厚度,从而降低驱动电压,这对提高叠层变压器、制动器都是有益的。减小粒径有上述如此多的好处,但同时也带来了降低压电效应的影响。为了克服这种影响,人们更改了传统的掺杂工艺,使细晶粒压电陶瓷压电效应增加到与粗晶粒压电陶瓷相当的水平。制作细晶粒材料的成本已可与普通陶瓷竞争了。人们用细晶粒压电陶瓷进行了切割研磨研究,并制作出了一些高频换能器、微制动器及薄型蜂鸣器(瓷片20-30um厚),证明了细晶粒压电陶瓷的优越性。随着纳米技术的发展,细晶粒压电陶瓷材料研究和应用开发仍是热点。

压电材料PbTiO3系压电陶瓷

PbTiO3系压电陶瓷具最适合制作高频高温压电陶瓷元件。虽然存在PbTiO3陶瓷烧成难、极化难、制作大尺寸产品难的问题,人们还是在改性方面作了大量工作,改善其烧结性。抑制晶粒长大,从而得到各个晶粒细小、各向异性的改性PbTiO3材料。近几年,改良PbTiO3材料报道较多,在金属探伤、高频器件方面得到了广泛应用。该材料的发展和应用开发仍是许多压电陶瓷工作者关心的课题。

压电材料压电复合材料

无机压电陶瓷和有机高分子树脂构成的压电复合材料,兼备无机和有机压电材料的性能,并能产生两相都没有的特性。因此,可以根据需要,综合二相材料的优点,制作良好性能的换能器和传感器。它的接收灵敏度很高,比普通压电陶瓷更适合于水声换能器。在其它超声波换能器和传感器方面,压电复合材料也有较大优势。国内学者对这个领域也颇感兴趣,做了大量的工艺研究,并在复合材料的结构和性能方面做了一些有益的基础研究工作,正致力于压电复合材料产品的开发。

压电材料多元单晶压电体

传统的压电陶瓷较其它类型的压电材料压电效应要强,从而得到了广泛应用。但作为大应变,高能换能材料,传统压电陶瓷的压电效应仍不能满足要求。于是近几年来,人们为了研究出具有更优异压电性的新压电材料,做了大量工作,现已发现并研制出了Pb(A1/3B2/3)PbTiO3单晶(A=Zn2 ,Mg2 )。这类单晶的d33最高可达2600pc/N(压电陶瓷d33最大为850pc/N),k33可高达0.95(压电陶瓷K33最高达0.8),其应变>1.7%,几乎比压电陶瓷应变高一个数量级。储能密度高达130J/kg,而压电陶瓷储能密度在10J/kg以内。铁电压电学者们称这类材料的出现是压电材料发展的又一次飞跃。美国、日本、俄罗斯和中国已开始进行这类材料的生产工艺研究,它的批量生产的成功必将带来压电材料应用的飞速发展。

查看详情

压电材料材料参数

  • 压电系数d33压电系数是压电体把机械能转变成电能或把电能转变成机械能的转变系数,反应压电材料弹性性能与介电性能之间的耦合关系

  • 自由介电常数εT33(free permittivity)电介质在应变为零(或常数)时的介电常数,其单位为法拉/米。相对介电常数εTr3(relative permittivity)介电常数εT33与真空介电常数ε0之比值,εTr3=εT33/ε0,它是一个无因次的物理量。介质损耗(dielectric loss)电介质在电场作用下,由于电极化弛豫过程和漏导等原因在电介质内所损耗的能量。损耗角正切tgδ(tangent of loss angle)理想电介质在正弦交变电场作用下流过的电流比电压相位超前90 0,但是在压电陶瓷试样中因有能量损耗,电流超前的相位角ψ小于900,它的余角δ(δ ψ=900)称为损耗角,它是一个无因次的物理量,人们通常用损耗角正切tgδ来表示介质损耗的大小,它表示了电介质的有功功率(损失功率)P与无功功率Q之比。即: 电学品质因数Qe(electrical quality factor)电学品质因数的值等于试样的损耗角正切值的倒数,用Qe表示,它是一个无因次的物理量。若用并联等效电路表示交变电场中的压电陶瓷的试样,则 Qe=1/ tgδ=ωCR机械品质因数Qm(mechanical quanlity factor)压电振子在谐振时储存的机械能与在一个周期内损耗的机械能之比称为机械品质因数。它与振子参数的关系式为:泊松比(poissons ratio)泊松比系指固体在应力作用下的横向相对收缩与纵向相对伸长之比,是一个无因次的物理量,用δ表示: δ= - S 12 /S11串联谐振频率fs(series resonance frequency)压电振子等效电路中串联支路的谐振频率称为串联谐振频率,用f s 表示,即并联谐振频率fp(parallel resonance frequency)压电振子等效电路中并联支路的谐振频率称为并联谐振频率,用f p 表示,即f p = 谐振频率fr(resonance frequency)使压电振子的电纳为零的一对频率中较低的一个频率称为谐振频率,用f r 表示。反谐振频率fa(antiresonance frequency)使压电振子的电纳为零的一对频率中较高的一个频率称为反谐振频率,用f a 表示。最大导纳频率fm(maximum admittance frequency)压电振子导纳最大时的频率称为最大导纳频率,这时振子的阻抗最小,故又称为最小阻抗频率,用f m表示。最小导纳频率fn(minimum admittance frequency)压电振子导纳最小时的频率称为最小导纳频率,这时振子的阻抗最大,故又称为最大阻抗频率,用f n表示。基频(fundamental frequency)给定的一种振动模式中最低的谐振频率称为基音频率,通常成为基频。泛音频率(fundamental frequency)给定的一种振动模式中基频以外的谐振频率称为泛音频率。温度稳定性(temperature stability)温度稳定性系指压电陶瓷的性能随温度而变化的特性。在某一温度下,温度变化1℃时,某频率的数值变化与该温度下频率的数值之比,称为频率的温度系数TKf。另外,通常还用最大相对漂移来表征某一参数的温度稳定性。正温最大相对频移=△f s (正温最大)/ f s(25℃)负温最大相对频移=△f s (负温最大)/ f s(25℃)机电耦合系数(ELECTRO MECHANICAL COUPLING COEFFICIENT)机电耦合系数K是弹性一介电相互作用能量密度平方V122与贮存的弹性能密度V1与介电能密度V2乘积之比的平方根。压电陶瓷常用以下五个基本耦合系数A、平面机电耦合系数KP(反映薄圆片沿厚度方向极化和电激励,作径向伸缩振动时机电耦合效应的参数。)B、横向机电耦合系数K31(反映细长条沿厚度方向极化和电激励,作长度伸缩振动的机电耦合效应的参数。)C、纵向机电耦合系数K33(反映细棒沿长度方向极化和电激励,作长度伸缩振动的机电耦合效应的参数。)D、厚度伸缩机电耦合系数KT(反映薄片沿厚度方向极化和电激励,作厚度方向伸缩振动的机电效应的参数。)E、厚度切变机电耦合系数K15(反映矩形板沿长度方向极化,激励电场的方向垂直于极化方向,作厚度切变振动时机电耦合效应的参数。)压电应变常数D(PIEZOELECTRIC STRAIN CONSTANT)压电应变常数是在应力T和电场分量EM(M≠I)都为常数的条件下,电场分量E变化所引起的应变分量SI的变化与EI变化之比。压电电压常数G(PIEZOELECTRIC VOLTAGE CONSTANT)该常数是在电位移D和应力分量TN(N≠I)都为常数的条件下,应力分量TI的变化所引起的电场强度分量EI的变化与TI的变化之比。居里温度TC(CURIE TEMPERATURE)压电陶瓷只在某一温度范围内具有压电效应,它有一临界温度TC,当温度高于TC时,压电陶瓷发生结构相转变,这个临界温度TC称为居里温度。温度稳定性(TEMPERATURE STABILITY)指压电陶瓷的性能随着温度变化的特性,一般描述温度稳定性有温度系数或最大相对漂移二种方法。十倍时间老化率(AGEING RATE PER DECADE) Y表示某一参数频率常数(FREQUENCY CONSTANT)对于径向和横向长度伸缩振动模式,其频率常数为串联谐振频率与决定此频率的振子尺寸(直径或长度)的乘积。对于纵向长度厚度和伸缩切变振动模式,其频率常数为并联谐振频率与决定此频率的振子尺寸(长度或厚度)的乘积,其单位:HZ.M

查看详情

压电材料文献

超薄压电材料 超薄压电材料

超薄压电材料

格式:pdf

大小:358KB

页数: 1页

超薄压电材料

压电材料中非周期裂纹对SH波的散射 压电材料中非周期裂纹对SH波的散射

压电材料中非周期裂纹对SH波的散射

格式:pdf

大小:358KB

页数: 未知

研究了SH波在无限弹性压电介质材料条中非周期裂纹处的散射,得到了压电材料在不同波数及不同裂纹间距情况下两裂纹尖端处的应力强度因子与电位移强度因子的变化规律.

新型压电材料简介

迄今为止,压电材料使用钛氧锆铅(PZT),而此次开发的材料不含铅成分,可实现高性能,对环境无害的传感器及换能器制造。这种钛氧钡系列的压电材料,是日本物质材料研究机构的研究人员任晓兵开发出的。压电材料具有增加电压产生伸缩、增加压力产生电压的特性,广泛应用于电能与机械能互相转换的换能器制造,是蜂鸣器、喷墨印刷机等不可缺少的材料。

压电材料利用正离子与负离子的中心移动这一性质,增加电场,使离子轻微移动。但在原理上,最大只能移动0.01%距离。此次研究小组利用新原理开发的压电材料正离子与负离子中心移动时产生的偶极矩电极化的区域,在增加电场之后沿电压方向一齐发生变化,实现了可逆性的巨大电致伸缩效应。在理论上可实现最大5%的移动。

该材料应用于超声成像(特别是医用超声成像)、声纳、微驱动器等器件可使其性能有重大提高。

查看详情

压电效应压电材料

压电材料会有压电效应是因晶格内原子间特殊排列方式,使得材料有应力场与电场耦合的效应。根据材料的种类,压电材料可以分成压电单晶体、压电多晶体(压电陶瓷)、压电聚合物和压电复合材料四种。根据具体的材料形态,则可以分为压电体材料和压电薄膜两大类。

压电效应聚合物

早在1940年,苏联就曾发现木材具有压电性。之后又相继在苎麻、丝竹、动物骨骼、皮肤、血管等组织中发现了压电性。1960年发现了人工合成的高分子聚合物的压电性。1969年发现电极化后的聚偏二氟乙烯具有较强的压电性。具有较强压电性的材料包括PVDF及其共聚物、聚氟乙烯、聚氯乙烯、聚-γ-甲基-L-谷氨酸酯和尼龙-11等。

压电效应复合材料

压电复合材料是有两种或多种材料复合而成的压电材料。常见的压电复合材料为压电陶瓷和聚合物(例如聚偏氟乙烯活环氧树脂)的两相复合材料。这种复合材料兼具压电陶瓷和聚合物的长处,具有很好的柔韧性和加工性能,并具有较低的密度、容易和空气、水、生物组织实现声阻抗匹配。此外,压电复合材料还具有压电常数高的特点。压电复合材料在医疗、传感、测量等领域有着广泛的应用。

查看详情

压电性压电材料

定义

压电材料  铁电单晶和铁电陶瓷(见铁电性)经过人工极化后都是压电体。非铁电型压电体可以是单晶体或高分子聚合物。技术上应用的压电材料的主要性能用弹性常数、介电常数、压电常数和机电耦合系数来标记,常简单地合称这些参数为压电体的电弹常数。机电耦合系数是压电体通过压电效应转化的能量对输入于压电体的总能量的比值,标志压电体将机械能与电能互相转换时的效率。压电体的介质和机械损耗角正切的倒数分别称为电品质因数和机械品质因数。

天然压电材料

天然的压电材料有石英、电气石等。人工合成材料有酒石酸钾钠、磷酸二氢铵、人工石英、压电陶瓷、碘酸锂、铌酸锂、氧化锌和高分子压电薄膜等。中国自50年代开始,科学院、高校和工矿企业等单位广泛进行人工压电材料合成,在上述材料中的多数方面都取得好成绩和有大规模的生产,解决了国内需要,并得到国际上的重视。

钛酸钡压电陶瓷

40年代发现了钛酸钡压电陶瓷,接着制成了一系列的其他压电陶瓷。由于陶瓷不溶于水,工作温度高,机械强度大并且容易制成各种需要的几何形状,成本低廉,使压电体的应用得到很大的发展。压电陶瓷是铁电多晶体。

铁电陶瓷一般不具有压电性,但是经过人工极化后,其中各个微晶粒的电矩取向沿极化时的外电场方向占优势,产生一个平均不为零的宏观剩余极化强度pr而成为压电陶瓷。通常陶瓷的pr比同种材料单晶体的自发极化强度pS小很多。压电陶瓷的宏观性质方向对称性属于点群∞m,它的无穷次对称轴沿人工极化时外加电场的方向。其压电张量非零独立分量个数与6mm相同,即

d31=d32,d33,d15=d24。

锆钛酸铅二元系压电陶瓷

应用最广的是锆钛酸铅二元系压电陶瓷,简称为 PZT。这系列材料在准同型相界附近具有很高的压电性,而且性能可以通过改变成分和掺杂来调整。其居里点高达350℃以上,机电耦合系数可高达0.7, pr可达0.4C/m2,d15可达7×10-10C/N,d33可达 5×10-10C/N,d31可达-2×10-10C/N。  压电谐振器  压电晶体通常按特殊的方式切割成具有某种几何形状,再在表面上加上一对适当的电极,利用它的机械谐振性能与压电效应相耦合而成为压电谐振器。薄片状振子其法向沿x、y或z轴方向者分别称为X切、Y切和Z切;参见图1, 其中的坐标系相对于晶轴的关系按 IRE标准规定。不同压电晶体按应用上的要求有许多特殊的切割方法。

石英晶体在高温时为β型, 属点群622;当温度降至573℃时转变为α 型,属点群32。通常应用的都是α石英,中国俗称水晶,或简称石英。它的z轴与三次对称轴平行,就是光轴;x轴沿二次对称轴,是个极轴,称为电轴;y轴垂直于zx平面,称为机械轴,图1还给出了石英的两种特殊取向切割法,称为AT切和GT切;这两种切片在室温范围附近谐振频率与温度无关。α石英的压电张量只有两个非零独立分量

式中对于左旋石英数据取正号,右旋石英取负号。

可以设计出具有各种谐振模式的压电振子。例如 X切的一块石英薄片,在两面上加上电极(图2a),就可以按薄片的设计形状在不同频率上用交流电压激发各种模式的机械谐振。图2b为利用d11激发的厚度谐振。图2c为利用d12激发的纵向长度谐振,图2d为利用d14激发的切变谐振。不同材料制成的压电振子还可激发其他更多方式的谐振,例如圆盘的径向谐振、长条的弯曲谐振等等。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639