选择特殊符号
选择搜索类型
请输入搜索
氧化锆陶瓷烧结工艺就是做成氧化锆陶瓷刀,你首先将氧氯化锆和氧化钇溶解成一定浓度的溶液,然后加入氨水共沉淀,得到锆凝胶,洗涤除杂后进电炉焙烧成氧化锆,粉碎后,加胶黏剂造粒,再压制成刀胚,进电炉烧制成型,...
可以用,可以找一家品牌大点的商家买仪器,希望可以帮到你
氧化锆陶瓷的硬度是很高的,大于9,仅次于金刚石的说法是正确的,金刚石的硬度定义应该是10,水晶的硬度应是7左右,没有氧化锆的硬度大。 希望对你有帮助,祝生活愉快!望采纳。
氧化锆增韧莫来石陶瓷热循环疲劳行为研究
主要研究了氧化锆增韧莫来石(ZTM)材料的热循环疲劳特性。结果表明:ZTM陶瓷的强度随热循环疲劳次数的增加呈阶梯性下降。压痕的引入降低了结果的分散性,提高了材料的韦伯模数m值;热循环疲劳寿命的实验结果与预测值相符合。
氧化锆相变增韧陶瓷是材料科学技术(一级学科),无机非金属材料(二级学科),陶瓷(三级学科),先进陶瓷(四级学科)。
氧化锆是一种特殊的材料,增韧的方法,主要是利用氧化锆的相变才能达到的!
纯净的氧化锆是白色固体,含有杂质时会显现灰色或淡黄色,添加显色剂还可显示各种其它颜色。纯氧化锆的分子量为123.22,理论密度是5.89g/cm3,熔点为2715℃。通常含有少量的氧化铪,难以分离,但是对氧化锆的性能没有明显的影响。氧化锆有三种晶体形态:单斜、四方、立方晶相。常温下氧化锆只以单斜相出现,加热到1100℃左右转变为四方相,加热到更高温度会转化为立方相。由于在单斜相向四方相转变的时候会产生较大的体积变化,冷却的时候又会向相反的方向发生较大的体积变化,容易造成产品的开裂,限制了纯氧化锆在高温领域的应用。但是添加稳定剂以后,四方相可以在常温下稳定,因此在加热以后不会发生体积的突变,大大拓展了氧化锆的应用范围。市场上用来做稳定剂的原料主要是氧化钇。
一、氧化锆增韧
对氧化铝陶瓷的增韧是使用最多的增韧方法是ZrO2(VK-R30)增韧。当氧化铝中加入纯Zr0(VK-R30),粒子形成ZrO2增韧氧化铝陶瓷时,当添加含量适当时,可使韧性显著提高。其韧化效果主要来源于以下机理:1.使氧化铝晶粒基体细化。2. 氧化锆相变韧化。3.显微裂纹韧化。4. 裂纹转向与分叉。
商用高纯氧化铝陶瓷与ZrO2(VK-R30)增韧氧化铝陶瓷力学性能对比
99%氧化铝陶瓷 氧化锆增韧氧化铝陶瓷
密度 3.85 3.93
抗折强度 350MPa 480MPa
抗压强度 3600MPa 3300MPa
硬度 1900HV 1600HV
抗冲击强度 5MPam1/2 7MPam1/2
二、晶须、纤维增韧
晶须是具有一定长径比(直径0.1—1.8 um,长35-l50um),且缺陷少的陶瓷单晶。具有很高的强度,是一种非常好的陶瓷基复合材料的增韧增强体;纤维长度较陶瓷晶须长数倍,也是一种很好的陶瓷增韧体,同时两者可复合实用。用SiC、Si3N4等晶须或C、SiC等长纤维对氧化铝陶瓷进行复合增韧。晶须或纤维的加入可以增加断裂表面,即增加了裂纹的扩展通道。当裂纹扩展的剩余能量渗入到纤维(晶须),发生纤维(晶须)的拔出、脱粘和断裂时,导致断裂能被消耗或裂纹扩展方向发生偏转等,从而使复合材料韧性得到提高。但当晶须、纤维含量较高时,由于其拱桥效应而使致密化变得困难,从而引起密度的下降和性能下降。
三、颗粒增韧
在氧化铝材料中加入一定粒度的具有高弹性模量的颗粒(如SiC、TiC、TiN等)可以在材料断裂时促使裂纹发生偏转和分叉,消耗断裂能,从而提高韧性。尽管颗粒增韧效果不如晶须、纤维,但用颗粒作为增韧剂制作颗粒增韧陶瓷基复合材料,其原料混合均匀化及烧结致密化都比纤维、品须复合材料简便易行。纳米颗粒复相陶瓷是在陶瓷基体中引入纳米级的第二相增强粒子,通常小于0.3um,可使材料的室温和高温性能大幅度提高,特别是强度值,上升幅度更大。
四、 氧化铝自增韧
采用纳米级的氧化铝粉末制备的陶瓷不加增塑剂仍旧在低温下显出极好的超塑性。纳米原料对改善陶瓷晶粒的形状、品界特性等起到了很好的效果。通过合理选择成分及工艺,使一部分氧化铝晶粒在烧结中原位发育成具有较高长径比的柱状晶粒,从而获得晶须的一种增韧机制。这也称为原位增韧,这种技术消除了基体相与增强相界面的不相容性,保证了基体相与增强。
相的热力学稳定,并使界面干净,结合良好。
另外,控制显微结构;改变晶粒形状、粒径、品界特性、气孔率等提高其断裂韧性;使用亚微细且各向分布均匀氧化铝;提高氧化铝粉纯度,改善组织结构。这些都是增加氧化铝陶瓷韧性的有效手段。