选择特殊符号
选择搜索类型
请输入搜索
凡是可用一阶微分方程描述的系统称一阶系统。
不是的呀,整体画图处理的画图后设置踏步边就行了
你好:见附图
这个是一基,中间那是柱
PSP带宽对波分复用系统中一阶PMD补偿的影响
考察了光纤的 PSP带宽对于一阶 PMD补偿的带宽限制及两种重要的一阶 PMD补偿技术在波分复用系统 WDM中应用的可行性 ,在此基础上提出了两种波分复用系统中 PMD补偿的具体补偿方案 ,并对它们作了比较
1.任意激励下一阶电路的通解一阶电路,a.b之间为电容或电感元件,激励Q(t)为任意时间函数,求一阶电路全响应一阶电路的微分方程和初始条件为:
df(t)dt+p(t)f(t)=?(t)
(1) f(0+)=u0其中p(t)=1τ,
用"常数变易法"求解。
令f(t)=u(t)e-∫p(t)dt,代入方程得
u(t)=∫(t)e∫p(t)dtdt+c1f(t)=c1e-∫p(t)dt+e-∫p(t)dt
∫(t)e∫p(t)dtdt=fh(t)+fp(t)
(2)常数由初始条件决定.其中fh(t)、fp(t)分别为暂态分量和稳态分量。
2.三要素公式通用形式用p(t)=1τ和初始条件f(0+)代入(2)式有c1=f(0+)-fp(0+)f(t)=fp(t)+[f(0+)-fp(0+)]e-1
上式中每一项都有确定的数学意义和物理意义.fp(t)=e-1τ∫(t)e1τdt在数学上表示方程的特解,即t~∞时的f(t),所以,在物理上fp(t)表示一个物理量的稳态。(随t作稳定变化)。
fh(t)=c1e-1τ在数学上表示对应齐次方程的通解,是一个随时间作指数衰减的量,当时t~∞,fh(t)~0,在物理上表示一个暂态,一个过渡过程。
c1=f(0+)-fp(0+),其中fp(0+)表示稳态解在t=0时的值.τ=RC(或L/R),表示f(t)衰减的快慢程度,由元件参数决定.
3.稳态解的求取方法由于稳态解是方程的特解,由上面的讨论可知:
fp(t)=e-1τ∫(t)e1τdt
对任意函数可直接积分求出.其方程和初始条件为:
didt+RLi=UmLcos(ωt+φu)i(0+)=I0ip(t)=e-LtR∫UmLcos(ωt+φu)eRtLdt.
用分步积分法求得ip(t)=UmR2+ω2L2cos(ωt+φu+θ),其中θ=tg-1(ωLR)ip(0+)=UmR2+ω2L2cos(φu+θ).2)由于稳态解是电路稳定后的值,对任意函数可用电路的稳态分析法求出.
如上题,使用相量法,有:I・=U・sZ=UmR2+ω2L2∠(φu+θ),ip(t)=UmR2+ω2L2cos(ωt+φu+θ).ip(0+)=UmR2+ω2L2cos(φu+θ).3)也可用试探法(待定系数法)求出fp(t).如上题中,可以令i=Imcos(ωt+Ψ),代入方程得,Im=UmR2+ω2L2,Ψ=φu+θ,ip(t)=UmR2+ω2L2=cos(ωt+φu+
《铁道科学技术名词》第一版。 2100433B
如果激励源通过一个电阻给电容器构成一个充电回路,并以电容两端的电压作为响应,就构成了一个以一阶微分方程描述的“一阶系统”,它的幅频响应在零频率处及其附近等于或接近于1,随着频率的增加,这个系统的幅频响应逐渐平滑地衰减为零。也就是说,较低的频率通过该系统时,没有或几乎没有什么衰减,而当较高的频率通过该系统时,将会受到较大的衰减。实际上,对于极高的频率而言,电容器相当于“短路”一样,其输出为零。换言之,这个系统适宜于通过低频率而对高频率有较大的阻碍作用,是一个最简单的“低通滤波器”。
当线性无源系统可以用一个N阶线性微分方程表示时,频率响应H(jω)为一个有理分式,它的分子和分母分 别与微分方程的右边和左边相对应。2100433B