选择特殊符号
选择搜索类型
请输入搜索
风洞试验是确定飞行器气动参数的重要途径,然而,风洞试验数据因为各种原因存在一定的不确定性,人们围绕提高风洞试验数据的精度和准度进行了不懈的努力。为了更客观地使用风洞试验数据,国外首先引入了不确定性分析方法。在不确定性分析过程中,最重要的技术环节就是获得相应的敏感性导数,对于导数的求取方法,最直接的方式就是利用差分法获取,随着计算流体力学(Computational Fluid Dynamics,CFD)技术的发展和成熟,利用CFD工具计算这些敏感性导数,理论上是可以实现的,但是,对于众多的敏感性导数,如果采用简单的差分算法意味着巨大的计算量以及过于繁杂的人工操作。此外,CFD软件计算的结果还受到网格数量、收敛精度等因素的影响,而且差分算法中步长的选取也对敏感性导数值产生影响。为了更有效地获得敏感性导数,国外引入自动微分方法,这种方法直接伴随CFD求解空气动力学基本方程的实际过程,敏感性导数的计算也是数学意义上严格的微分概念,更有意义的是,只要开发出的计算程序设计合适,可以在一次性计算中同时获得大量的敏感性导数,而且敏感性导数的收敛精度与流场的收敛精度达到相同的量级,因此,敏感性导数的计算精度可以得到充分保证。同时,相对于同样具有高精度,但计算量过大的复步长微分方法和难以推广到复杂问题的符号微分方法,自动微分对具体问题的适应性和可行性最好。国内对自动微分的研究应用始于21世纪初,在气动优化领域己取得一些进展,对风洞试验不确定性分析的研究和成果主要围绕试验误差分析和不确定度合成方法,并且主要应用在积分型气动力系数不确定度的计算上,对于来流状态本身的随机不确定性对模型各部分气动性能影响程度的差异以及模型各部分对来流不确定性的承受能力的差异则考虑不多。
徐林程以跨声速翼型为对象,应用自动微分软件Tapenade对课题组开发的CFD程序进行改造,对典型超临界翼型的亚声速和跨声速敏感性导数进行计算,给出了压力系数分布对来流条件的不确定性分析。这项工作对于认识和指导风洞试验研究有一定的实用价值。
实验模型由角钢骨架和玻璃钢蒙皮组成。翼型内部设计有一空腔,空腔是由角钢焊接成的框架,截面尺寸约为50 cm x 12 cm。空腔内间隔一定距离焊接加强肋,以增加模型的强度和刚度。加强肋固定于中间的d103 mm钢管上,此钢管也作为模型的转轴,其中心位于模型25%弦长处,并从模型上、下端伸出。翼型弦长为0. 800 m,展长为2. 970 m最大厚度为21%翼型剖面如图1。模型中间位置处布置有两排测压点,模型顶端偏下约20 cm处布置一测压剖面,整个翼型共有3个剖面的测压孔,每测压剖面上下翼面共有96个测压点,整个模型共有288个测压点。每个相对坐标X处,翼型上下表面都布置有测压点。
模型竖直安装在风洞上下转盘中心位置。安装时,模型下端通过下连接板与风洞下转盘螺栓连接固定,模型上端为活动连接,其上端转轴通过上连接件的轴套固定,使模型可以上下移动和转动,通过风洞下转盘旋转,以实现模型迎角的控制。
模型下游约0. 7倍弦长、高度1245 mm处水平安装由39根探头组成的总压排管,总压排管安装在跨度1.8m的两个支撑座上,并通过支杆同下洞壁相连。总压排管上另附有4个静压测量探头,用于测量尾流处的参考静压。风洞实验段前方安装一风速管,用于测量参考总、静压。模型在风洞中的实验照片如图2。
翼型模型风洞试验的侧壁干扰严重影响试验结果的可靠性。一些简化的修正方法和风洞侧壁抽吸对试验数据准度有一定的改善,但无法完全消除侧壁干扰和风洞内结合区拐角流动对试验结果的影响。近几年来,国内外很多学者开展了用三维Navier-Stokes方程计算风洞侧壁干扰的研究。焦予秦采用Jameson等发展的中心有限体积、多步Range-Kutta时间步长格式求解三维Navier-Stokes方程,计算安置在两风洞侧壁间的翼型模型绕流流动,对风洞侧壁干扰及其影响因素进行研究,为翼型风洞侧壁干扰分析提供了一个有力的工具。
研究可以得到如下结论:
(1)计算了安装在跨声速翼型风洞中的翼型模型外的流动,并对影响翼型风洞侧壁干扰的各种因素进行了研究。计算中采用二维和三维Navier-Stokes方程数值计算方法。计算结果反映了由于侧壁干扰而产生的二维风洞流动的三维性,在翼型与侧壁结合部出现通常在翼身组合体中可见的分离。这些证明用数值方法研究翼型风洞侧壁干扰的可行性。
(2)研究表明,增大模型的展弦比、减薄风洞侧壁边界层厚度以及采用风洞侧壁边界层抽吸均能够减小风洞侧壁干扰,改善风洞内流动的展向均匀性。
(3)计算结果与实验结果相比仍有偏差,为了对其原因进行分析,建议进行进一步的数值模拟,这包括对风洞四壁干扰进行综合模拟和寻求更好的适合这种复杂流动的湍流模型。
招标单位应该给工程量单位的,是必须的,如果不给应该提出问题后让招标单位进行答疑。 我想应该是米吧,清单的价格是综合单价,是根据该清单的项目特征进行定额组价后实现的,定额内各子目的单位是不可能跟清单的单...
你可以在重庆公共租赁房信息网查询到公租房申请审核结果。 木耳公租房申请小贴士 哪些人可以申请公租房? 年满18周岁,在主城区工作、本市无住房或家庭人均住房建筑面积低于13平方米的住房困难家庭; 大中专...
根据混凝土结构设计规范GB50010-2010第3.3.2条γRd——结构构件的抗力模型不定性系数:静力设计取1.0,对不确定性较大的结构构件根据具体情况取大于1.0的数值;抗震设计应用承载力抗震调整...
在二维翼型实验中,风洞侧壁边界层的存在对翼型绕流情况会产生不利的影响。主要表现在随着迎角增大,出现模型和侧壁相交处的边界层分离区会沿展向约以45度角向模型中间扩展,影响翼型的绕流特性。为减少侧壁边界层的影响,国内外翼型风洞曾采用了许多控制方法。风洞侧壁边界层吹除法以对吹除位置不敏感的特点,作为常规翼型实验,结合实验室已有的高压储气设备,NF-3风洞采用该方法对侧壁附面层进行控制。
附面层吹气法的基本原理是在模型区布置吹气缝,通过给模型区主气流中增加切向的、可调节压力的均匀气流,使流经风洞沿程所形成的较厚边界层得到减薄,从而提高翼型实验,尤其是带有增升装置的多段翼型实验的准确性。
解亚军介绍了NF-3风洞二元实验段侧壁边界层吹除控制系统及实验方法,以GAW-1翼型为例,给出了不同吹气系数对风洞边界层的控制效果,研究了附面层吹除法对单段翼型和多段翼型实验结果的影响规律。结果表明,该控制系统能有效地改善翼型表面的流动特性。 2100433B
工程经济评价中的不确定性分析(续)
工程经济评价中的不确定性分析(续)——所谓概率就是机会和可能性的意思。大量的自然和社会现象都具有概率性质。对存在不确定性的工程项目而言,由于不确定性因素的变动使项目经济效益的变化具有概率性,不确定性因素的概率分析就是根据不确定因素的概率预测项...
项目投资效益审计的不确定性分析
项目投资效益审计中经常存在许多不确定性因素,对这些因素进行不确定性分析,才能找出影响项目投资的重要因素,为管理决策提供依据。在介绍效益审计概念与不确定性产生原因的基础上讲述了盈亏平衡点与敏感性分析项目在投资效益审计的应用。
风洞种类繁多,有不同的分类方法。按实验段气流速度大小来区分,可以分为低速、高速和高超声速风洞。
许多国家相继建造了不少较大尺寸的低速风洞。基本上有两种形式,一种是法国人A.-G.埃菲尔设计的直流式风洞;另一种是德国人L.普朗特设计的回流式风洞,图1是这两种风洞结构示意图。现在世界上最大的低速风洞是美国国家航空和航天局(NASA)埃姆斯(Ames)研究中心的12.2米×24.4米全尺寸低速风洞。这个风洞建成后又增加了一个24.4米× 36.6米的新实验段,风扇电机功率也由原来25兆瓦提高到100兆瓦。
低速风洞实验段有开口和闭口两种形式,截面形状有矩形、圆形、八角形和椭圆形等,长度视风洞类别和实验对象而定。60年代以来,还发展出双实验段风洞,甚至三实验段风洞。
风洞就是用来产生人造气流(人造风)的管道。在这种管道中能造成一段气流均匀流动的区域,汽车风洞试验就在这段风洞中进行。
在低速风洞中,常用能量比Er衡量风洞运行的经济性。式中v0和A0分别为实验段气流速度和截面积;ρ为空气密度;η和N 分别为驱动装置系统效率和电机的输入功率。对于闭口实验段风洞Er为3~6。雷诺数Re是低速风洞实验的主要模拟参数,但由于实验对象和项目不同,有时尚需模拟另一些参数,在重力起作用的一些场合下(如尾旋、投放和动力模型实验等)还需模拟弗劳德数Fr,在直升机实验中尚需模拟飞行马赫数和旋翼翼尖马赫数等。
低速风洞的种类很多,除一般风洞外,有专门研究飞机防冰和除冰的冰风洞,研究飞机螺旋形成和改出方法的立式风洞,研究接近飞行条件下真实飞机气动力性能的全尺寸风洞,研究垂直短距起落飞机(V/STOL)和直升机气动特性的V/STOL风洞,还有高雷诺数增压风洞等。为了研究发动机外部噪声,进行动态模型实验,一些风洞作了改建以适应声学实验和动态实验要求。为了开展工业空气动力学研究,除了对航空风洞进行改造和增加辅助设备外,各国还建造了一批专用风洞,如模拟大气流动的速度剖面、湍流结构和温度层结的长实验段和最小风速约为0.2米/秒的大气边界层风洞,研究全尺寸汽车性能、模拟气候条件的汽车风洞,研究沙粒运动影响的沙风洞等。
直流式闭口实验段低速风洞是典型的低速风洞。在这种风洞中,风扇向右端鼓风而使空气从左端外界进入风洞的稳定段。稳定段的蜂窝器和阻尼网使气流得到梳理与和匀,然后由收缩段使气流得到加速而在实验段中形成流动方向一致、速度均匀的稳定气流。在实验段中可进行飞机模型的吹风实验,以取得作用在模型上的空气动力实验数据。这种风洞的气流速度是靠风扇的转速来控制的。中国气动力研究和发展中心已建成一座开路式闭口串列双试段大型低速风洞,第一实验段尺寸为12×16×25米3,最大风速为25米/秒,第二实验段尺寸为8×6×25米3,最大风速为100米/秒。
回流式风洞实际上是将直流式风洞首尾相接,形成封闭回路。气流在风洞中循环回流,既节省能量又不受外界的干扰。风洞也可以采用别的特殊气体或流体来代替空气,用压缩空气代替常压空气的是变密度风洞,用水代替空气的称为水洞(见水槽和水洞)。
实验段内气流马赫数为0.4~4.5的风洞。按马赫数范围划分,高速风洞可分为亚声速风洞、跨声速风洞和超声速风洞。
风洞的马赫数为0.4~0.7。结构形式和工作原理同低速风洞相仿,只是运转所需的功率比低速风洞大一些。
风洞的马赫数为0.5~1.3。当风洞中气流在实验段内最小截面处达到声速之后,即使再增大驱动功率或压力,实验段气流的速度也不再增加,这种现象称为壅塞。因此,早期的跨声速实验只能将模型装在飞机机翼上表面或风洞底壁的凸形曲面上,利用上表面曲率产生的跨声速区进行实验。这样不仅模型不能太大,而且气流也不均匀。后来研究发现,实验段采用开孔或顺气流方向开缝的透气壁,使实验段内的部分气流通过孔或缝流出,可以消除风洞的壅塞,产生低超声速流动。这种有透气壁的实验段还能减小洞壁干扰,减弱或消除低超声速时的洞壁反射波系。因模型产生的激波,在实壁上反射为激波,而在自由边界上反射为膨胀波,若透气壁具有合适的自由边界,则可极大地减弱或消除洞壁反射波系。
为了在各种实验情况下有效地减弱反射波,发展出可变开闭比(开孔或开缝占实验段壁面面积的比例)和能改变开闭比沿气流方向分布的透气壁。第一座跨声速风洞是美国航空咨询委员会(NACA)在1947年建成的。它是一座开闭比为12.5%、实验段直径为 308.4毫米的开缝壁风洞。此后跨声速风洞发展很快,到50年代就已建设了一大批实验段口径大于1米的模型实验风洞。
洞内气流马赫数为1.5~4.5的风洞。风洞中气流在进入实验段前经过一个拉瓦尔管而达到超声速。只要喷管前后压力比足够大,实验段内气流的速度只取决于实验段截面积对喷管喉道截面积之比。通常采用由两个平面侧壁和两个型面组成的二维喷管。
喷管的构造型式有多种,例如:两侧壁和两个型面装配成一个刚性半永久性组合件并直接与洞体连接的固定喷管;由可更换的型面块和喷管箱侧壁组成喷管,并将喷管箱与洞体连接而成的固块喷管;由两块柔性板构成喷管型面,且柔性板的型面可进行调节的柔壁喷管(图3)。实验段下游的超声速扩压器由收缩段、第二喉道和扩散段组成(图4),通过喉道面积变化使超声速流动经过较弱的激波系变为亚声速流动,以减小流动的总压损失。第一座超声速风洞是普朗特于1905年在德国格丁根建造的,实验马数可达到1.5。
1920年A.布泽曼改进了喷管设计,得到了均匀超声速流场。1945年德国已拥有实验段直径约 1米的超声速风洞。50年代,世界上出现了一批供飞行器模型实验的超声速风洞,其中最大的是美国的4.88米×4.88米的超声速风洞。
建设的许多风洞,往往突破了上述亚声速、跨声速和超声速单一速度的范围,可以在一个风洞内进行亚声速、跨声速和超声速实验。这种风洞称为三声速风洞。中国气动力研究与发展中心的1.2米×1.2米跨声速、超声速风洞(图5)是一座三声速风洞。
60年代以来,提高风洞的雷诺数受到普遍重视。跨声速风洞的模型实验雷诺数通常小于1×109,大型飞行器研制需要建造雷诺数更高(例如大于4×109)的跨声速风洞,因而出现了增高驻点压力的路德维格管风洞,用喷注液氮降低实验气体温度、提高雷诺数的低温风洞等新型风洞。低温风洞具有独立改变马赫数、雷诺数和动压的能力,因此发展很快。
马赫数大于 5的超声速风洞。主要用于导弹、人造卫星、航天飞机的模型实验。实验项目通常有气动力、压力、传热测量和流场显示,还有动稳定性、低熔点模型烧蚀、质量引射和粒子侵蚀测量等。高超声速风洞主要有常规高超声速风洞、低密度风洞、激波风洞、热冲风洞等形式。
高超音速风洞 如要在风洞中获得更高 M数的气流(例如M≥5),一般来说单靠上游高压空气的吹冲作用还不能产生足够的压力差,这时在风洞下游出口处接上一只容积很大的真空容器,靠上冲下吸便可形成很大的压差,从而产生M≥5的高超音速气流。不过气流在经过喷管加速到高超音速的过程中会急剧膨胀,温度会随之急剧下降,从而引起气体的自身液化。为避免液化或模拟需要的温度,必须在高超音速风洞中相当于稳定段处装设加热装置。高超音速风洞依加热原理和用途的不同有多种型式。暂冲式常规高超音速风洞 较为典型,它很像常规的超音速风洞。其他型式的风洞有激波风洞、炮风洞、热冲风洞、长冲风洞、气体活塞式风洞、电弧风洞等(见超高速实验设备)。中国气动力研究和发展中心的高压-引射驱动的暂冲式常规高超音速风洞实验段直径为 0.5米。这个中心还建成一座实验段直径为2米的激波风洞。
它是在超声速风洞的基础上发展起来的。图6为高超声速风洞示意图。图7为一座实验段直径为0.5米的暂冲式高超声速风洞照片。
常规高超声速风洞的运行原理与超声速风洞相似,主要差别在于前者须给气体加热。因为在给定的稳定段温度下,实验段气流静温随马赫数增加而降低,以致实验段气流会出现液化。实际上,由于气流膨胀过程很快,在某些实验条件下,存在不同程度的过饱和度。
所以,实际使用的稳定段温度可比根据空气饱和曲线得到的温度低。根据不同的稳定段温度,对实验气体采用不同的加热方法。在通常情况下,气体燃烧加热器加热温度可达750开;镍铬电阻加热器可达1000开;铁铬铝电阻加热器可达1450开;氧化铝卵石床加热器可达1670开;氧化锆卵石床加热器可达2500开;以高纯度氮气为实验气体的钨电阻加热器可达2200开;石墨电阻加热器可达2800开。
早期常规高超声速风洞常采用二维喷管。在高马赫数条件下,喉道尺寸小,表面高热流引起的热变形使喉道尺寸不稳定,边界层分布也非常不均匀,都会影响气流均匀性。所以,后期大多数高超声速风洞安装了锥形或型面轴对称喷管。锥形喷管加工容易,但产生锥型流场,所以后来逐渐被型面喷管代替。在马赫数大于 7的情况下,对高温高压下工作的喷管喉道,一般用水冷却。
常规高超声速风洞的典型气动性能以实验马赫数和单位雷诺数来表征。以空气作实验气体的典型风洞的实验马赫数为5~14,每米雷诺数的量级为3×106。为进一步提高实验马赫数和雷诺数,采用凝结温度极低(4 开)的氦气作实验气体,在室温下马赫数可达到25;加热到1000开时马赫数可达到42。
世界上第一座常规高超声速风洞是德国在第二次世界大战时建造的。这是一座暂冲式风洞。马赫数上限为10,实验段尺寸为1米×1米。德国战败,风洞未能完全建成。战后,美国建造了多座尺寸在0.45米以上的常规高超声速风洞,少数为连续式,大多为暂冲式。
形成稀薄(低密度)气体流动的高超声速风洞。它为研制航天器提供高空飞行的气动环境,也是研究稀薄气体动力学的实验工具。低密度风洞主要进行滑移流态和过渡流态下的实验,主要模拟克努曾数、马赫数、物面平均温度和滞止温度(气体速度变成零时的温度)之比(约为0.06~1)等参数,以及高温低压下的真实气体效应。低密度风洞的原理和结构同常规高超声速风洞相仿。同常规高超声速风洞相比,它有以下特点:稳定段压力和实验模型尺寸均较常规高超声速风洞成量级地减小;具有庞大的真空抽气系统和优良的风洞密封性能;普遍采用深冷拉瓦尔管或小孔自由射流实验技术,以解决由于低雷诺数、高马赫数而引起的喷管边界层加厚问题,从而能在更大的克努曾数下获得供实验用的、足够尺寸的稀薄气流区域;在相同的马赫数下预防工作气体液化的加热要求较一般高超声速风洞为低。但在低密度风洞实验中,由于气流密度小,实验模型尺寸小,所以模型的气动力、热、压力等均甚微弱,测量技术难度大。电磁悬挂天平、电子束装置等非接触测量技术已用于有关测量。图8为低密度风洞示意图。
利用激波压缩实验气体,再用定常膨胀方法产生高超声速实验气流的风洞。它由一个激波管和连接在它后面的喷管等风洞主要部件组成。在激波管和喷管之间用膜片(第二膜片)隔开,喷管后面被抽成真空。图9为反射型激波风洞原理示意图。激波风洞的工作过程是:风洞启动时主膜片先破开,引起驱动气体的膨胀,产生向上游传播的膨胀波,并在实验气体中产生激波。当此激波向下游运动达到喷管入口处时,第二膜片被冲开,因而经过激波压缩达到高温高压的实验气体即进入喷管膨胀加速,流入实验段供实验使用。当实验条件由于波系反射或实验气体流完而遭到破坏时,实验就结束。
激波风洞的实验时间短,通常以毫秒计。激波风洞的名称是赫兹伯格于1951年提出的。它的发展与中、远程导弹和航天器的发展密切相关。50年代初至60年代中期,由于急需研究高超声速飞行中出现的高温真实气体效应,激波风洞主要用于模拟高温条件。60年代中期以后,由于需要战略弹头在低空作机动飞行,它即转向于模拟高雷诺数,并于1971年首先实现了这种模拟的运行。早期的激波风洞采用直通型(入射激波在喷管入口处不反射而直接通过喷管)运行,因而实验时间非常短(甚至短于1毫秒),难以应用,因此又发展出反射型激波风洞。这种风洞有不同的运行方法,如适当选择运行条件,通常可取得5~25毫秒的实验时间。激波风洞实验已确立为一种标准的高超声速实验技术,并已成为高超声速气动力数据的主要来源。
实验项目通常是传热、压力、气动力测量和流场显示,此外还有电子密度测量等特殊项目。现有激波风洞运行的最高参数是:驱动压力约为3400大气压(1大气压等于101325帕);可以模拟 6.7千米/秒的飞行速度;气流马赫数达24;雷诺数达108(当马赫数为8时)。
利用电弧脉冲放电定容地加热和压缩实验气体,产生高超声速气流的风洞。基本结构如图10所示。运行前储能装置储存电能,弧室充入一定压力的气体,膜片下游各部位被抽吸到真空状态(一般不低于105帕)。运行时,储存的电能以千分之一毫秒到几十毫秒的时间在弧室内通过电弧放电释放,以加热和压缩气体;当弧室中压力升高到某个预定值时,膜片被冲破;气体经过喷管膨胀加速,在实验段中形成高超声速气流;然后通过扩压器排入真空箱内。
与常规高超声速风洞和激波风洞不同,热冲风洞的实验气流是准定常流动(见非定常流动),实验时间约20~200毫秒;实验过程中弧室气体压力和温度取决于实验条件和时间,与高超声速风洞和激波风洞相比大约要低10~50%。所以要瞬时、同步地测量实验过程中实验段的气流参量和模型上的气动力特性,并采用一套专门的数据处理技术。热冲风洞的研制开始于20世纪50年代初,略后于激波风洞。原来是要利用火花放电得到一个高性能的激波管驱动段,后来就演变成热冲风洞。“热冲”这个词是 R.W.佩里于1958年提出来的。
热冲风洞的一个技术关键是将材料烧损和气体污染减少到可接受的程度。采取的措施有:以氮气代替空气作为实验气体;减小暴露在热气体中的弧室绝缘面积;合理设计析出材料烧损生成微粒的电极和喉道挡板结构;适当选取引弧用的熔断丝;限制风洞在弧室气体温度低于4000开下运行等。热冲风洞的储能装置有电容和电感两种方式。前者常用于储存10兆焦耳以下的能量,后者多用于储存5~100兆焦耳的能量。
还有一种方式是电网直接供电,其能量一般为10兆焦耳量级,不同的电能利用方式要求有相应的充电放电系统。热冲风洞的模拟范围一般可以达到:马赫数 8~22,每米雷诺数1×105~2×108。长达上百毫秒的实验时间,不仅使它一次运行能够完成模型的全部攻角的静态风洞实验,而且可以进行风洞的动态实验,测量动稳定性,以及采用空气作实验气体(温度一般在3000开以下)进行高超声速冲压发动机实验。
除上述风洞外,高超声速风洞还有氮气风洞、氦气风洞、炮风洞(轻活塞风洞)、长冲风洞(重活塞风洞)、气体活塞风洞、膨胀风洞和高超声速路德维格管风洞等。
为了满足各种特殊实验的需要,还可采用各种专用风洞,冰风洞供研究飞机穿过云雾飞行时飞机表面局部结冰现象。尾旋风洞供研究飞机尾旋飞行特性之用。这种风洞的实验段垂直放置,气流上吹呈碟形速度分布,而且风速可以迅速改变,能托住尾旋模型使其不致下坠。
自然风洞指的是大自然形成的天然山洞,洞口往外有风刮出,具体位置有湖南省新化县游家镇新塘村源头垅老屋上的风洞,秋冬季节和春季,风洞会停止刮风,只有夏天才会刮风,风温很低,只有几度,洞口寸草不生,人在洞口不能久留,否则会全身冰凉,一到晚上会听到呜呜的风鸣声,由于风声过于强大,老一辈们在五六十年代将洞口堵住,但风仍然吹开一个口子,不过风速明显减小,但风的温度不变。洞内生活一种类似猫的动物,全身花纹酷似斑马。对于风洞的形成还没有人解开谜底,在当地成为一种阴影,有不祥之征兆。
阳春3月,记者走进中国自主设计建造的亚洲最大的立式风洞,领略风洞里独特的风景。
置身人造“天空”
秦岭之巅还残雪点点,山脚之下已是桃花吐艳。汽车驶过一段蜿蜒的山路,眼前景象豁然开朗:翠绿的山林间,一座5层高的建筑拔地而起。
“我们到了,这就是亚洲最大的立式风洞。”听到陪同人员介绍,记者感到有些失望,因为眼前的景象与想象中完全不一样。新建成的立式风洞不算高大,也不显得很威武,甚至不如城市里常见的摩天大楼。
从外表看,与普通房屋唯一不同的是,该建筑身上“背”着一根粗大的铁管。技术人员对记者介绍:“可不能小瞧这铁家伙,它是产生气流的主要通道。”
其实,风洞普通的外表下有着神奇的“心脏”。步入其中,记者发现这片人造“天空”完全是用高科技的成果堆砌而成。
风洞建设是一个涉及多学科、跨专业的系统集成课题,囊括了包括气动力学、材料学、声学等20余个专业领域。整个立式风洞从破土动工到首次通气试验仅用了2年半,创造了中国风洞建设史上的奇迹。
大厅里,螺旋上升的旋梯簇拥着两节巨大的管道,好不壮观!与其说它是试验设备,不如说是风格前卫的建筑艺术品。
一路参观,记者发现该风洞“亮点”多多:实现了两个摄像头同时采集试验图像,计算机自动判读处理;率先将世界最先进的中压变频调速技术用于风洞主传动系统控制,电机转速精度提高50%……
负责人介绍说,立式风洞是中国庞大风洞家族中最引人瞩目的一颗新星,只有极少数发达国家拥有这种风洞。
感受“风”之神韵
风,来无影去无踪,自由之极。可在基地科研人员的手中,无影无踪无所不在的风被梳理成循规蹈矩、各种强度、各种“形状”的气流。
记者赶得巧,某飞行器模型自由尾旋改进试验正在立式风洞进行。
何谓尾旋?它是指飞机在持续的失速状态下,一面旋转一面急剧下降的现象。在人们尚未彻底了解它之前,尾旋的后果只有一个:机毁人亡。资料显示,1966年至1973年,美国因尾旋事故就损失了上百架F-4飞机。
控制中心里,值班员轻启电钮,巨大的电机开始转动。记者不由自主地用双手捂住耳朵,以抵挡将要到来的“惊雷般的怒吼”。可没想到,想象中的巨响没有到来,只有空气穿流的浅唱低吟。30米/秒、50米/秒……风速已到极至,记者站在隔音良好的试验段旁,却没有领略到“大风起兮”的意境。
你知道50米/秒风速是什么概念?胜过飓风!值班员告诉记者,如果把人放在试验段中,可以让你体验被风吹起、乘风飞翔的感觉。
中国首座立式风洞已形成强大的试验能力。负责人告诉记者:该型风洞除可完成现有水平式风洞中的大多数常规试验项目,还能完成飞机尾旋性能评估、返回式卫星及载人飞船回收过程中空气动力稳定性测试等。
翼型中弧线到几何弦的距离。
风洞主要由洞体、驱动系统和测量控制系统组成,各部分的形式因风洞类型而不同。
它有一个能对模型进行必要测量和观察的实验段。实验段上游有提高气流匀直度、降低湍流度的稳定段和使气流加速到所需流速的收缩段或喷管。实验段下游有降低流速、减少能量损失的扩压段和将气流引向风洞外的排出段或导回到风洞入口的回流段。有时为了降低风洞内外的噪声,在稳定段和排气口等处装有消声器。
驱动系统共有两类。
一类是由可控电机组和由它带动的风扇或轴流式压缩机组成。风扇旋转或压缩机转子转动使气流压力增高来维持管道内稳定的流动。改变风扇的转速或叶片安装角,或改变对气流的阻尼,可调节气流的速度。直流电动机可由交直流电机组或可控硅整流设备供电。它的运转时间长,运转费用较低,多在低速风洞中使用。使用这类驱动系统的风洞称连续式风洞,但随着气流速度增高所需的驱动功率急剧加大,例如产生跨声速气流每平方米实验段面积所需功率约为4000千瓦,产生超声速气流则约为16000~40000千瓦。
另一类是用小功率的压气机事先将空气增压贮存在贮气罐中,或用真空泵把与风洞出口管道相连的真空罐抽真空,实验时快速开启阀门,使高压空气直接或通过引射器进入洞体或由真空罐将空气吸入洞体,因而有吹气、引射、吸气以及它们相互组合的各种形式。使用这种驱动系统的风洞称为暂冲式风洞。暂冲式风洞建造周期短,投资少,一般[[雷诺数]]较高,它的工作时间可由几秒到几十秒,多用于跨声速、超声速和高超声速风洞。对于实验时间小于 1秒的脉冲风洞还可通过电弧加热器或激波来提高实验气体的温度,这样能量消耗少,模拟参数高。
其作用是按预定的实验程序,控制各种阀门、活动部件、模型状态和仪器仪表,并通过天平、压力和温度等传感器,测量气流参量、模型状态和有关的物理量。随着电子技术和计算机的发展,20世纪40年代后期开始,风洞测控系统,由早期利用简陋仪器,通过手动和人工记录,发展到采用电子液压的控制系统、实时采集和处理的数据系统。