选择特殊符号
选择搜索类型
请输入搜索
工厂集研制、开发、生产、经营为一体。生产设备齐全,工艺流程先进。主要产品有:99氧化铝坩埚、堇青石、刚玉莫来石匣钵、板、管、氧化锆承烧板、承烧钵、氧化铝窑具、氧化铝90-99瓷件,主打产品精细刚玉承烧钵(板)有着耐高温,无污染,使用寿命长等优点,产品性能处于国际先进水平,可替代进口产品。 氧化铝陶瓷的优点:硬度大、强度高、耐高温、耐腐蚀、电气绝缘性好的特点。广泛用作工程机械、纺织机械、电子电器的耐磨、耐高温、耐腐蚀、绝缘器件。
2100433B
宜兴市冠铭特种陶瓷科技有限公司 地址:江苏省无锡市宜兴市丁蜀镇查林村工业园区明月建陶对面 交通: 宜兴5,1小时9分,7公里,直达,步行1900米 宜兴220 → 宜兴202/宜兴201,1小时12分...
宜兴市九荣特种陶瓷有限公司挺不错的,该产品美观大方,价格实惠,耐腐蚀、样式新颖美观、轻便,保温性能好、耐压,使用的寿命长,经得起时间的考验,且不易被淘汰。而且采用纯正的材质,在做工方面是非常细致,在市...
宜兴市科源特种陶瓷有限公司是不错的噢,主要经营精密氮化硅陶陶瓷球/结构件/柱塞/棒/管;精密全陶瓷轴承;精密混合陶瓷轴承;精密氧化锆陶瓷球;精密氧化铝陶瓷球等产品,质量有保障噢。 希望我的回答可以帮到...
广亚铝业有限公司简介
广亚铝业有限公司 Guang Ya Aluminum Co., Ltd. 地址:广东省佛山市南海区狮山镇官窑白沙桥东 总机电话:(0757)85883338 85886818 第 1 页 共 77 页 广亚铝业有限公司简介 公司概况 广亚铝业有限公司位于佛山市南海区,是铝材名城热土上一颗璀璨的明珠。自 1996 年创立,广亚铝业随着南海建筑型材业的发展强势崛起,发展至今已成为占 地面积 26 万平方米,拥有固定资产 8 亿元,员工 2000 余人,年产能达 12 万吨 的世界知名的大型现代化铝型材制造企业。作为国家生态建材示范企业、建设部建 筑铝合金型材定点生产企业,广亚铝业专业各种生产建筑及工业用铝型材,同时公 司还是欧洲两大著名门窗系统的授权生产企业, 拥有中国名牌产品、 中国驰名商标、 广东省高新技术企业、佛山市民最喜爱的品牌企业等一系列荣誉称号
众地集团有限公司简介
众地集团有限公司简介 众地集团有限公司是山东省重要涉外企业, 是青岛市总商会副会长单位以及青岛国际 商会副会长单位, 总部位于山东省青岛市栈 桥风景区。 众地集团有限公司前身为创立 于 1994 年的中国地毯进出口公司青岛办事 处,资本金为 298 万元人民币, 纯国有性质, 之后又先后经历了青岛中土畜地毯有限责 任公司、山东中地进出口有限公司等发展阶 段。 2003 年厎,公司管理层和创业团队全 额收购了山东中地进出口有限公司的国有 股份,改制为完全民营企业, 并以此为基础 创办了众地集团有限公司。目前,公司注册 资本金为 9900 万元人民币, 2010年底公司 净资产为人民币 6 亿余元。众地集团有限公 司的财务资本原则上聚焦投放于自身主营 业务领域, 鉴于近年来中国国内较高的通货 膨胀现状, 部分闲置资本则作为纯粹的财务 投资,投向了相对稳健、 进入门槛较高且潜 在收益较大的地方商
特种陶瓷是二十世纪发展起来的,在现代化生产和科学技术的推动和培育下,它们"繁殖"得非常快,尤其在近二、三十年,新品种层出不穷,令人眼花缭乱。按照化学组成划分有:
氧化物陶瓷:氧化铝、氧化锆、氧化镁、氧化钙、氧化铍、氧化锌、氧化钇、二氧化钛、二氧化钍、三氧化铀等。
氮化物陶瓷:氮化硅、氮化铝、氮化硼、氮化铀等。
碳化物陶瓷:碳化硅、碳化硼、碳化铀等。
硼化物陶瓷:硼化锆、硼化镧等。
硅化物陶瓷:二硅化钼等。
氟化物陶瓷:氟化镁、氟化钙、三氟化镧等。
硫化物陶瓷:硫化锌、硫化铈等。
还有砷化物陶瓷,硒化物陶瓷,碲化物陶瓷等。
除了主要由一种化合物构成的单相陶瓷外,还有由两种或两种以上的化合物构成的复合陶瓷。例如,由氧化铝和氧化镁结合而成的镁铝尖晶石陶瓷,由氮化硅和氧化铝结合而成的氧氮化硅铝陶瓷,由氧化铬、氧化镧和氧化钙结合而成的铬酸镧钙陶瓷,由氧化锆、氧化钛、氧化铅、氧化镧结合而成的锆钛酸铅镧(PLZT)陶瓷等等。此外,有一大类在陶瓷中添加了金属而生成的金属陶瓷,例如氧化物基金属陶瓷,碳化物基金属陶瓷,硼化物基金属陶瓷等,也是现代陶瓷中的重要品种上。为了改善陶瓷的脆性,在陶瓷基体中添加了金属纤维和无机纤维,这样构成的纤维补强陶瓷复合材料,是陶瓷家族中最年轻但却是最有发展前途的一个分支。为了生产、研究和学习上的方便,有时不按化学组成,而根据陶瓷的性能,把它们分为高强度陶瓷,高温陶瓷,高韧性陶瓷,铁电陶瓷,压电陶瓷,电解质陶瓷,半导体陶瓷,电介质陶瓷,光学陶瓷(即透明陶瓷),磁性瓷,耐酸陶瓷和生物陶瓷等等。
随着科学技术的发展,人们可以预期现代陶瓷将会更快地发展,产生更多更新的品种。
特种陶瓷的主要制备工艺过程包括坯料制备、成型和烧结三步。在成型工艺完成后,烧结可以控制晶粒的生长,对材料的使用性能影响至关重大。到目前为止,陶瓷烧结技术一直是人们不断突破的领域。
特种陶瓷烧结原理
烧结是指成型后的坯体在高温作用下、通过坯体间颗粒相互粘结和物质传递,气孔排除,体积收缩,强度提高、逐渐变成具有一定的几何形状和坚固烧结体的致密化过程。在宏观和微观上对烧结现象进行观察,可以看到宏观上,烧结后的产物体积收缩,致密度提高,强度增加。微观上,气孔形状改变,晶体长大,成份变化(掺杂元素)。按照烧结过程中的变化,主要将烧结分为以下阶段:
1
烧结 前期阶段
粘结剂等的脱除:如石蜡在250~400℃全部汽化挥发。 随着烧结温度升高。原子扩散加剧,空隙缩小,颗粒间由点接触转变为面接触,空隙缩小,连通孔隙变得封闭,并孤立分布。 小颗粒率先出现晶界,晶界移动,晶粒变大。2
烧结后期阶段
孔隙的消除:晶界上的物质不断扩散到孔隙处,使孔隙逐渐消除。 晶粒长大:晶界移动,晶粒长大。陶瓷烧结主要可分为固相烧结和液相烧结,并分别对应着不同的反应机理。液相烧结的反应机理可简单归纳为熔化、重排、溶解-沉淀、气孔排除;按照烧结体的结构特征,将固相烧结机理划分为3个阶段:烧结初期、烧结中期和烧结后期。
固相烧结示意图
烧结前期:在烧结初期,颗粒相互靠近,不同颗粒间接触点通过物质扩散和坯体收缩形成颈部。在这个阶段,颗粒内的晶粒不发生变化,颗粒的外形基本保持不变。
烧结中期:烧结颈部开始长大,原子向颗粒结合面迁移,颗粒间距离缩小,形成连续的孔隙网络。该阶段烧结体的密度和强度都增加。
烧结后期:一般当烧结体密度达到90%,烧结就进入烧结后期。此时,大多数孔隙被分隔,晶界上的物质继续向气孔扩散、填充,随着致密化继续进行,晶粒也继续长大。这个阶段烧结体主要通过小孔隙的消失和孔隙数量的减少来实现收缩,收缩缓慢。
特种陶瓷烧结方法
人们根据不同的依据分别对陶瓷的烧结方法进行分类,其特点及适用范围如下:
陶瓷烧结方法简介
影响烧结的因素
1
粉末颗粒度
细颗粒增加烧结推动力,缩短原子扩散距离,提高颗粒在液相中的溶解度,导致烧结过程加速,但是过细的颗粒容易吸附大量气体,妨碍颗粒间的接触,阻碍烧结,因此必须根据烧结条件合理的选择粒度。
2
外加剂的作用
固相烧结中,外加剂可通过增加缺陷促进烧结;液相烧结中,外加剂可通过改变液相的性质来促进烧结。
3
烧结温度和时间
提高烧结温度对固相扩散等传质有利,但过高的温度会促使二次结晶,使材料性能恶化。烧结的低温阶段以表面扩散为主,高温阶段以体积扩散为主,低温烧结时间过长对致密化不利,是材料的性能变坏,因此通常采用高温短时烧结提高材料的致密度。
4
烧结气氛
在空气中烧结,会使晶体生成空位、造成缺陷,所以烧结不同的基体材料要对气氛进行选择。而气氛对烧结的影响又十分复杂。一般材料如TiO2、BeO、Al2O3等,在还原气氛中烧结,氧可以直接从晶体表面逸出,形成缺陷结构,从而利于烧结;非氧化物陶瓷,由于在高温下易被氧化,因而在氮气及惰性气体中进行烧结;PZT陶瓷,为防止Pb的挥发,要求加气氛片或气氛粉体进行密闭烧结。
5
成型压力
坯体的成型压力也对材料的性能影响至关重要。成型压力越大,坯体中颗粒接触的越紧密,烧结时扩散阻力越小;过高的成型压力又会是粉料发生脆性断裂,不利于烧结。
声明
1.本文内容由中国粉体网旗下粉享家团队打造,转载请注明出处!
2.请尊重、保护原创文章,谢绝任何其他账号直接复制原创文章!
特种陶瓷有热压铸、热压、静压及气相沉积等多种成型方法,这些陶瓷由于其化学组成、显微结构及性能不同于普通陶瓷,故称为特种陶瓷或高技术陶瓷,在日本称为精细陶瓷。
(1)在粉末制备方面,最引人注目的是超高温技术。利用超高温技术不但可廉价地研制特种陶瓷,还可廉价地研制新型玻璃,如光纤维、磁性玻璃、混合集成电路板、零膨胀结晶玻璃、高强度玻璃、人造骨头和齿棍等。此外,利用超高温技术还可以研制出象钽、钼、钨、钒铁合金和钛等能够应用于太空飞行、海洋、核聚变等尖端领域的材料。例如日本在4000—15000℃和一个大气压以下制造金钢石,其效率比普遍采用的低温低压等离子体技术高一百二十倍。
超高温技术具有如下优点:能生产出用以往方法所不能生产的物质;能够获得纯度极高的物质:生产率会大幅度提高;可使作业程序简化、易行。在超高温技术方面居领先地位的是日本。据统计,2000年日本超高温技术的特种陶瓷市场规模也将会超过20万亿日元。此外,溶解法制备粉末、化学气相沉积法制备陶瓷粉末、溶胶K凝胶法生产莫来石超细粉末以及等离子体气相反应法等也引起了人们的关注。在这几种方法中,绝大部分是开发研究出来的或是得以完善的。
(2)成型方面:特种陶瓷成型方法大体分为干法成型和湿法成型两大类,干法成型包括钢模压制成型、等静压成型、超高压成型、粉末电磁成型等;湿法成型大致可分为塑性成型和胶态浇注成型两大类。近些年来胶态成型和固体无模成型技术在特种陶瓷的成型研究中也取得了较为快速的发展。
陶瓷胶态成形是高分散陶瓷浆料的湿法成形,与干法成形相比,可以有效控制团聚,减少缺陷。无模成形实际上是快速原型制造技术(Rapid prototyping manufacturing technology,RP&M) 在制备陶瓷材料中的应用。特种陶瓷材料胶态无模成形过程是通过将含或不含粘结剂的陶瓷浆料在一定的条件下直接从液态转变为固态,然后按照RP&M的原理逐层制造得到陶瓷生坯的过程。成形后的生坯一般都具备良好的流变学特性,可以保证后处理过程中不变形。
特种陶瓷成型技术未来的发展将集中于以下几个发面:
a、进一步开发已经提出的各种无模成形技术在制备不同陶瓷材料中的应用;
b、性能更加复杂的结构层以及在层内的穿插、交织、连接结构和成分三维变化的设计;
c、大型异形件的结构设计与制造;
d、 陶瓷微结构的制造及实际应用;
e、进一步开发无污染和环境协调的新技术。
(3)烧结方面:特种陶瓷制品因其特殊的性能要求,需要用不同于传统陶瓷制品的烧成工艺与烧结技术。随着特种陶瓷工业的发展,其烧成机理、烧结技术及特殊的窑炉设施的研究取得突破性的进展。特种陶瓷的主要烧结方法有:常压烧结法、热压烧结/热等静压烧结法、反应烧结法、液相烧结法、微波烧结法、电弧等离子烧结法、自蔓延烧结法、气相沉积法等。
(4)在特种陶瓷的精密加工方面:特种陶瓷属于脆性材料,硬度高、脆性大,其物理机械性能(尤其是韧性和强度)与金属材料有较大差异,加工性能差,加工难度大。因此,研究特种陶瓷材料的磨削机理,选择最佳的磨削方法是当前要解决的主要问题 。
如今兴起的磨削加工方法主要有:
a、超声波振动磨削加工方法;
b、在线电解修整金刚石砂轮磨削加工方法;
c、电解、电火花复合磨削加工工艺;
d、电化学在线控制加工方法。
采用刀具加工陶瓷也引起了人们的极大兴趣。这方面的工作仅处于研究实验阶段,由于用超高精度的车床和金刚石单晶车刀进行加工,以微米数量级的微小吃刀深度和微小的走刀量,能获得0.1微米左右的加工精度,因而许多国家把这种加工技术作为超精密加工的一个方面而加以开发研究,在中国,清华大学新型陶瓷与精细工艺国家重点实验室在这方面的研究成果已位居世界前列。
特种陶瓷由于拥有众多优异性能,因而用途广泛。现按材料的性能及种类简要说明。
(1)耐热性能优良的特种陶瓷可望作为超高温材料用于原子能有关的高温结构材料、高温电极材料等;
(2)隔热性优良的特种陶瓷可作为新的高温隔热材料,用于高温加热炉、热处理炉、高温反应容器、核反应堆等;
(3)导热性优良的特种陶瓷极有希望用作内部装有大规模集成电路和超大规模集成电路电子器件的散热片;
(4)耐磨性优良的硬质特种陶瓷用途广泛,如今的工作主要是集中在轴承、切削刀具方面;
(5)高强度的陶瓷可用于燃气轮机的燃烧器、叶片、涡轮、套管等;在加工机械上可用于机床身、轴承、燃烧喷嘴等。这方面的工作开展得较多,许多国家如美国、日本、德国等都投入了大量的人力和物力,试图取得领先地位。这类陶瓷有氮硅、碳化硅、塞隆、氮化铝、氧化锆等;
(6)具有润滑性的陶瓷如六方晶型氮化硼极为引人注目,国外正在加紧研究;
(7)生物陶瓷方面正在进行将氧化铝、磷石炭等用作人工牙齿、人工骨、人工关节等研究,这方面的应用引起人们极大关注;
(8)一些具有其他特殊用途的功能性新型陶瓷(如远红外陶瓷等)也已开始在工业及民用领域发挥其独到的作用。
(1)特种陶瓷基础技术的研究,例如烧结机理、检测技术和粉末制备技术等;
(2)超导陶瓷的研究;
(3)特种陶瓷的薄膜化或非晶化是提高陶瓷功能的有效方法,因而许多国家都把它作为一项主要内容而加以研究;
(4)陶瓷的纤维化是研制隔热材料、复合增强材料等的重要基础,如今国外,尤其是日本对陶瓷纤维及晶须增强金属复合材料的研究极为重视,其研究主要集中于碳化硅及氮化硅;
(5)多孔陶瓷由于具有特殊结构,所以引起了各界的重视;
(6)陶瓷与陶瓷或陶瓷与其它材料复合(陶瓷纤维增强陶瓷,陶瓷纤维增强金属)问题也是现阶段的研究重点;
(7)在非氮化物陶瓷中,国外研究最多的是陶瓷发动机,高压热交挽器及陶瓷刀具等;
(8)随着生物化学,生物医学这些新兴学科的发展,生物陶瓷的开发研究也变得越来越重要。