选择特殊符号
选择搜索类型
请输入搜索
第1篇 综合配套措施案例
案例1 北美页岩气开发钻井降本增效主要配套措施
案例2 美国页岩气开发应用学习曲线降本增效分析
案例3 美国Southweste Energy公司一体化管理降本增效配套措施
案例4 挪威Statoil公司页岩气钻井降本增效配套措施
案例5 加拿大EnCana公司页岩气开发降本增效配套措施
案例6 中国石油长宁—威远页岩气田开发降本增效配套措施
案例7 中国石油黄金坝页岩气田开发降本增效配套措施
案例8 中国石化涪陵页岩气田钻井降本增效配套措施
案例9 中国石化川渝地区深层页岩气田开发降本增效配套措施
案例10 美国Eagle Ford页岩气田工厂化钻井配套措施
案例11 中国石油长宁页岩气田工厂化钻井配套措施
案例12 中国石化涪陵页岩气田工厂化经济评价与钻井配套措施
案例13 中国石油长宁—威远页岩气田钻井环保配套措施
案例14 中国石油昭通页岩气田水基钻井液环保措施
案例15 中国石化涪陵页岩气田钻井环保配套措施
第2篇 钻井工程措施案例
案例16 Eagle Ford页岩气田钻井提速提效配套措施
案例17 长宁—威远页岩气田钻井提速提效配套措施
案例18 焦石坝页岩气田钻井提速提效配套措施
案例19 涪陵页岩气田深层钻井提速提效配套措施
案例20 涪陵页岩气田中深层水平井地质导向技术措施
案例21 威远页岩气田水平井地质导向技术措施
案例22 黄金坝页岩气田水平井地质导向技术措施
案例23 四川盆地页岩气水平井防窜固井配套技术措施
案例24 焦石坝页岩气田水平井固井配套技术措施
案例25 威远页岩气田提高井筒密封完整性固井技术措施
案例26 北美页岩气水平井水基钻井液主要技术措施
案例27 长宁页岩气田水平井水基钻井液技术措施
案例28 长宁—威远页岩气田水平井白油基钻井液技术措施
案例29 长宁页岩气田水平井无土相油基钻井液技术措施
案例30 涪陵页岩气田水平井油基钻井液技术措施
第3 篇 完井工程措施案例
案例31 Marcellus 页岩气田水平井完井压裂降本增效配套措施
案例32 涪陵页岩气田水平井完井压裂降本增效配套措施
案例33 涪陵焦石坝页岩气田水平井完井压裂降本增效配套措施
案例34 长宁页岩气田水平井组拉链式压裂降本增效配套措施
案例35 Montney 页岩气田增能压裂液技术措施
案例36 Eagle Ford 页岩气田水平井多级滑套压裂技术措施
案例37 Haynesville 页岩气田水平井重复压裂技术措施
参考文献2100433B
本书精选提炼国内外页岩气开发钻井降本增效典型案例37个,每个案例包括案例背景、降本增效措施、实施效果分析。其中15个综合配套措施案例介绍了北美和中国页岩气开发钻井降本增效综合配套措施、工厂化钻井配套措施、钻井环保配套措施;15个钻井工程措施案例介绍了页岩气钻井提速提效配套措施、钻井地质导向技术措施、固井技术措施、钻井液技术措施;7个完井工程措施案例介绍了页岩气完井压裂降本增效配套措施和水平井增能压裂、多级滑套压裂、重复压裂等单项技术措施。
本书可供非常规油气勘探开发工程相关管理人员、专业技术人员、经济研究人员、造价专业人员参考,也可作为页岩气开发钻井工程相关人员的培训辅助教材。
一点一滴深挖潜 一分一厘巧增效1、深度优化:节能项目一个都不能少2、优化操作:发挥每一名职工的主观能动性3、厉行节约:把每一分钱都掰成两半花
第2版前言第1版前言第1章 土方工程1.1 土的分类与工程性质1.2 场地平整、土方量计算与土方调配1.3 基坑土方开挖准备与降排水1.4 基坑边坡与坑壁支护1.5 土方工程的机械化施工复习思考题第2...
转载以下资料供参考 企业如何降低成本 1.靠现代化的管理降低成本 要降低成本,必须抓住管理这个纲。各企业要将实行成本目标管理与经济责任制相结合,强化成本核算,在产、供、销、财务等各个环节都要加强...
页岩气开发过程中的钻井技术分析
119 2017年第 5期 勘探开发 1? 页岩气的特征及发展现状 页岩气是一种特殊的非常规天然气,赋存于泥岩或页 岩中,具有自生自储、低孔、低渗等特征。国外页岩气开 发利用已经规模化,我国页岩气仍处于起步阶段,目前在 四川长宁 -威远等地区的页岩气开发获得突破,开始产能 建设。 2? 页岩气钻井技术分析 页岩气钻井先后经历直井、单支水平井、多分支水平井、 丛式井的发展阶段,目前页岩气开采方式以水平井为主。 2.1? 水平井设计优化技术 采用工厂化钻井设计,利用最小丛式井井场使开发井 网覆盖区域最大化,为后期的批量化钻井作业、压裂施工 奠定基础,降低投资费用。每井组 3~ 8口井,水平井段间 距 300~400m,水平段长 1000~1500m 2.2? 井眼轨迹控制技术 利用地质导向提高储层钻遇率:采用 LWD,利用电阻 率、伽玛进行地质导向,可确保储层钻遇率,同时采用马 达 +MWD
降本增效汇报材料
山西灵石 ??煤业有限公司 降 本 增 效 活 动 报 告 机电科 2012 年 7 月 山西灵石华瀛天星集广煤业有限公司 机电科“降本增效”活动报告 当前,在国际和国内经济发展的大背景下,今年以来,全国煤炭经济运行形势受国内外 经济形势影响,煤炭供求关系发生变化,产量继续增长,需求大幅下降。从我国主要煤炭消 费发展情况来看,电力、冶金、建材、化工等各大行业产品产量增幅大幅回落,煤炭需求大 幅减少。经专家分析,在以后一段时间,煤炭市场将继续走低 ??面临严峻的市场竞争,企业 能否生存、发展,增强自身的竞争力,很大程度取决于成本费用管理水平的高低。实现企业 利润的最大化,企业成本起了关键性和决定性作用。在如此经济形势挑战之际,我矿于 2012 年 7月 7 日召开的安全例会上研究决定, 为适应经济形势转变, 展开企业降本增效管理活动。 “企业兴衰,人人有责” , 全面强化全体员工树立成本管
前人对美国5大页岩气盆地页岩气的成因研究表明,页岩气可以通过以下2种途径演变而来。
1、热裂解成因气(自然生成)
页岩中热成因气的形成有3个途径(如图):①干酪根分解成气体和沥青;②沥青分解成油和气体(步骤1和步骤2为初次裂解);③油分解成气体、高含碳量的焦炭或者沥青残余物(二次裂解)。最后一个步骤主要取决于系统中油的残余量和储层的吸附作用。德克萨斯州的Fort Worth盆地的Barnett页岩气就是通过来源于干酪根热降解和残余油的二次裂解,主要以残余油的二次裂解为主,正因为如此,使得Barnett页岩气具有较大资源潜力。
页岩气是从页岩层中开采出来的天然气,主体位于暗色泥页岩或高碳泥页岩中,页岩气是主体上以吸附或游离状态存在于泥岩、高碳泥岩、页岩及粉砂质岩类夹层中的天然气,它可以生成于有机成因的各种阶段天然气主体上以游离相态(大约50%)存在于裂缝、孔隙及其它储集空间,以吸附状态(大约50%)存在于干酪根、粘土颗粒及孔隙表面,极少量以溶解状态储存于干酪根、沥青质及石油中。天然气也存在于夹层状的粉砂岩、粉砂质泥岩、泥质粉砂岩、甚至砂岩地层中。天然气生成之后,在源岩层内的就近聚集,表现为典型的原地成藏模式,与油页岩、油砂、地沥青等差别较大。与常规储层气藏不同,页岩既是天然气生成的源岩,也是聚集和保存天然气的储层和盖层。因此,有机质含量高的黑色页岩、高碳泥岩等常是最好的页岩气发育条件。
2、生物成因气
一般指页岩在成岩的生物化学阶段直接由细菌降解而成的气体,也有气藏经后期改造而成的生物气。如美国密歇根盆地的Antrim页岩气是干酪根成熟过程中所产生的热降解气和产甲烷菌新陈代谢活动中所产生的生物成因气,以后者为主。其原因可能是发育良好的裂缝系统不仅使天然气和携带大量细菌的原始地层水进入Antrim页岩内,而且来自上覆更新统冰川漂移物中含水层的大气降水也同时侵入,有利于细菌甲烷的形成。
1、沉积环境
较快的沉积条件和封闭性较好的还原环境是黑色页岩形成的重要条件。沉积速率较快可以使得富含有机质页岩在被氧化破坏之前能够大量沉积下来,而水体缺氧可以抑制微生物的活动性,减小其对有机质的破坏作用。如Fort Worth盆地Barnett组富有机质黑色页岩沉积于深水(120~215米)前陆盆地,具有低于风暴浪基面和低氧带(OMZ)的缺氧—厌氧特征,与开放海沟通有限。
2、有效厚度
广泛分布的泥页岩是形成页岩气的重要条件。同时,沉积有效厚度是保证足够的有机质及充足的储集空间的前提条件,页岩的厚度越大,页岩的封盖能力越强,有利于气体的保存,从而有利于页岩气成藏。美国5大页岩气勘探开采区的页岩净厚度为9.14~91.44米,其中产气量较高的Barnett页岩和Lewis页岩的平均厚度在30.48米以上。
3、总有机碳含量(TOC)
总有机碳含量是烃源岩丰度评价的重要指标,也是衡量生烃强度和生烃量的重要参数。有机碳含量随岩性变化而变化,对于富含粘土的泥页岩来说,由于吸附量很大,有机碳含量最高,因此,泥页岩作为潜力源岩的有机含量下限值就愈高,而当烃源岩的有机质类型愈好,热演化程度高时,相应的有机碳含量下限值就低。对泥质油源岩中有机碳含量的下限标准,国内外的看法基本一致,为0.4%~0.6%,而泥质气源岩有机碳含量的下限标准则有所不同。大量研究结果表明,气态烃分子小,在水中的溶解能力强,易于运移,气源岩有机碳含量的下限标准要比油源岩低得多。美国5大页岩气系统页岩总有机碳含量较高,分布范围大(0.5%~25%),可分为2类,Antrim页岩和New Albany页岩的TOC含量较高,一般分布于0.3%~25%之间;而Ohio页岩、Barnett页岩和Lewis页岩的TOC含量在0.45%~4.7%之间。
4、干酪根类型和成熟度
在不同的沉积环境中,由不同来源有机质形成的干酪根,其组成有明显的差别,其性质和生油气潜能也有很大差别。因此,研究干酪根的类型(性质)是油气地球化学的一项重要内容,也是评价干酪根生油、生气潜力的基础。干酪根类型是衡量有机质产烃能力的参数,不同类型的干酪根同时也决定了产物以油为主还是以气为主。一般来说,Ⅰ型干酪根和Ⅱ型干酪根以生油为主,Ⅲ型干酪根则以生气为主。纵观美国页岩气盆地的页岩干酪根类型,主要以Ⅰ型干酪根与Ⅱ型干酪根为主,也有部分Ⅲ型干酪根,而且不同干酪根类型的页岩都生成了数量可观的气,有理由相信,干酪根类型并不是决定产气量的关键因素。沉积岩石中分散有机质的丰度和成烃母质类型是油气生成的物质基础,而有机质的成熟度则是油气生成的关键。干酪根只有达到一定的成熟度才能开始大量生烃和排烃。不同类型的干酪根在热演化的不同阶段生烃量也不同。在低熟阶段(0.4%~0.6%),有机质就可以向烃类转变。美国5大页岩盆地页岩的热成熟度分布范围在0.4%~2.0%之间,可见在有机质生烃的整个过程都有页岩气的生成。随着成熟度的增加,早期所生成的原油开始裂解成气。美国Barnett页岩之所以含气量大,主要源于生烃体积(有机质丰度、生烃潜力和页岩厚度引起的结果),成熟度以及部分液态烃持续裂解生气。成熟度越低的Barnett页岩区,其气体产量就越低,这可能是因为生气少,残留烃的流动阻塞孔隙的缘故。许多高熟的Barnett页岩区干酪根和油的裂解使生气量大幅提高,导致页岩气井气体流量大。因此,成熟度是评价高流量页岩气相似性的关键地球化学参数。
1、孔隙度
在常规储层中,孔隙度是描述储层特性的一个重要方面。页岩储层也是如此。作为储层,页岩多显示出较低的孔隙度(<10%),当然也可以有很大的孔隙度,且在这些孔隙里储存大量的游离气,即使在较老的岩层,游离气也可以充填孔隙的50%。游离气含量与孔隙体积的大小密切联系。一般来说,孔隙体积越大,所含的游离气量就越大。
2、裂缝发育
页岩的矿物成分较复杂,石英含量高,且多呈粘土粒级,常以纹层形式出现,而有机质、石英含量都很高的页岩脆性较强,容易在外力作用下形成天然裂缝和诱导裂缝,有利于天然气渗流,说明岩性、岩石矿物成分是控制裂缝发育程度的主要内在因素。
由于页岩具有低孔隙度低渗透率的特性,产气量不高,而那些开放的矩形天然裂缝弥补了这一不足,大大提高了页岩气产量。裂缝改善了泥页岩的渗流能力,裂缝既是储集空间,也是渗流通道,是页岩气从基质孔隙流入井底的必要途径。并不是所有优质烃源岩都能够形成具有经济开采价值的裂缝性油气藏,只有那些低泊松比、高弹性模量、富含有机质的脆性页岩才是页岩气资源的首要勘探目标。
3、有机碳含量
在裂缝性页岩气系统中,页岩对气的吸附能力与页岩的总有机碳含量之间存在线性关系。
在相同压力下,总有机碳含量较高的页岩比其含量较低的页岩的甲烷吸附量明显要高。页岩气除了被有机质表面所吸附之外,还可以吸附在粘土的表面(干燥)。在有机碳含量接近和压力相同的情况下,粘土含量高的页岩所吸附的气体量要比粘土含量低的页岩高。而且随着压力的增大,差距也随之增大。
4、地层压力
地层压力也是影响页岩气产量的因素之一。研究表明,地层压力与吸附气有着正相关性,地层压力越大,页岩的吸附能力就越大,吸附气的含量也就越高。游离气含量也会随着压力的增加而增加,两者基本上呈线性关系。值得注意的是,压力在6.89MPa以前,吸附气含量随压力增加的幅度很明显,而在其之后,增加的幅度不太明显,类似于常规的致密气藏。当然,不同地区由于有机质含量和周围围岩封存能力的不同,压力梯度也会产生差异。
除了上述影响因素之外,有机质类型、成熟度等也会影响页岩气含量。
页岩气经历了复杂多变的成藏过程,是天然气成藏机理序列中的重要构成和典型代表。根据不同的成藏条件,页岩气成藏可以表现为典型的吸附机理、活塞运聚机理或置换运聚机理。按照成藏机理的不同,可将天然气成藏过程分为3个主要阶段,而前2个阶段即是页岩气的成藏过程。
第1阶段是天然气的生成与吸附。该阶段发生在成藏初期,与煤层气的成藏机理相同。由于页岩中的有机碳等物质表面具有吸附能力,页岩生气过程中,最开始生成的少量天然气均被有机碳等物质吸附,故页岩层中仅存有吸附态的天然气(图A)。
第2阶段是天然气的造隙及排出。该阶段处于生气高峰期,与根缘气的形成机理类似。随着天然气的大量生成,页岩中的有机碳无法将其完全吸附,因此未被吸附的天然气在页岩层中以游离态聚集。随着页岩气的不断生成,聚集的大量游离气因膨胀而形成高压,直至岩层破裂并产生微裂隙。由于此时产生的裂缝或孔隙极其微小,使得页岩气无法在页岩层内部自由流动。在此后的强力生烃作用即生气膨胀力的作用下,页岩气沿构造上倾方向从底部高压区向高部相对低压区发生排驱和整体推进作用,从而使地层处于大面积包含气状态。此阶段生成的天然气不受浮力作用,表现为活塞式的运聚特征(图B)。
第3阶段是天然气的置换与运移。如果天然气的生成量持续增加而页岩层的外部又有合适的储层,则在浮力作用下,天然气将以置换方式沿裂缝从泥页岩层向储层运移,从而形成常规天然气藏(图C)。
页岩气成藏过程中,吸附机理与活塞式运聚机理共同作用,控制着页岩气藏中吸附态和游离态天然气所占空间比例变化。因此,页岩气的成藏机理实质上是天然气在页岩孔隙中赋存状态之间的动态平衡。页岩中吸附态天然气的存在是由其本身所含岩石特性决定的,与保存条件没有直接关系,故页岩气成藏后对保存条件没有特殊要求。在四川盆地海相地层中监测到的气测异常也证实了即便是多期次的构造运动,也不会对页岩气藏有太大的影响。
9月26日,位于重庆市南川区水江镇的页岩气中石化195平台工人正在打开“焦页195—1HF井”和“焦页195—2HF井”的通气阀。
当日,重庆市南川区页岩气通过长南输气干线接入“川气东送”管网正式输气。南川区是页岩气资源富集区,预测储量为5000亿立方米以上。重庆南川页岩气自2012年起开始勘探,预计今年可完成26口井的钻井工程,投产18口井,明年6月全部投产。据悉,南川页岩气项目全部达产后,年产气将达16亿立方米。
(经济日报)
页岩气与深盆气、煤层气一样都属于“持续式”聚集的非常规天然气。
天然气在页岩中的生成、吸附与溶解逃离,具有与煤层气大致相同的机理过程。如图所示,通过生物作用或热成熟作用所产生的天然气首先满足有机质和岩石颗粒表面吸附的需要,此时所形成的页岩气主要以吸附状态赋存于页岩内部。当吸附气量与溶解的逃逸气量达到饱和时,富裕的页岩气解吸进入基质孔隙。随着天然气的大量生成,页岩内压力升高,出现造隙及排出,游离状天然气进入页岩裂缝中并聚积。
页岩岩性多为沥青质或富含有机质的暗色、黑色泥页岩和高碳泥页岩类,岩石组成一般包括30%~50%的粘土矿物、15%~25%的粉砂质(石英颗粒)和4%~30%的有机质。正是由于页岩具有这样的特性,所以页岩中的天然气具有多种存在方式,主要包括了2种形式,即游离态(大量存在于页岩孔隙和裂缝中)和吸附态(大量存在于粘土矿物、有机质、干酪根颗粒及孔隙表面上),其中吸附态存在的天然气占天然气赋存总量的20%以上(BarnettShale)到85%(LewisShale)。