选择特殊符号
选择搜索类型
请输入搜索
《厌氧-缺氧-好氧活性污泥法污水处理工程技术规范》,为贯彻《中华人民共和国水污染防治法》,防治水污染,改善环境质量,规范厌氧缺氧好氧活性污泥法在污水处理工程中的应用,制定本标准。
厌氧-缺氧-好氧活性污泥法污水处理工程技术规范
Technical Specifications for Anaerobic-Anoxic-Oxic Activated SludgeProcess
( HJ576-2010 2011-01-01实施)
为贯彻《中华人民共和国水污染防治法》,防治水污染,改善环境质量,规范厌氧缺氧好氧活性污泥法在污水处理工程中的应用,制定本标准。本标准规定了采用厌氧-缺氧-好氧活性污泥法的污水处理工程工艺设计、电气、检测与控制、施工与验收、运行与维护的技术要求。本标准适用于采用厌氧缺氧好氧活性污泥法的城镇污水和工业废水处理工程,可作为环境影响评价、设计、施工、验收及建成后运行与管理的技术依据。本标准为首次发布。
是第五水处理工程技术的一个规范 他的话也属于是我们的感情做事
回复:你所提出的这些设备尤其是大型的一般都是在工业项目才会有,尤其是水处理设备,安装定额中很多缺项,可以参照相应差不多的水处理设备执行,也可以借用市政定额。
污水处理是为使污水达到排水某一水体或再次使用的水质要求,并对其进行净化的过程。污水处理被广泛应用于建筑、农业,交通、能源、石化、环保、城市景观、医疗、餐饮等各个领域,也越来越多地走进寻常百姓的日常生活...
36厌氧缺氧好氧活性污泥法污水处理
厌氧 缺氧 好氧活性污泥法污水处理 工程技术规范 1 目次 1 标准制定工作概述 ......................................................................
36厌氧缺氧好氧活性污泥法污水处理 (2)
厌氧 缺氧 好氧活性污泥法污水处理 工程技术规范 1 目次 1 标准制定工作概述 .......................................................................... 1 1.1 任务来源和工作过程 ...
缺氧—好氧活性污泥法脱氮参数:
1.水利停留时间
1)硝化反映≥6h;
2)反硝化反映<2h;
3)硝化与返硝化水力停留时间比3:1.
2.循环比不宜<200%,活性污泥法系统取值可达600%;
3.反映器内MLSS值一般〉3000mg/L;
4.污泥龄一般>30d;
5.N/MLSS负荷率<0.03gN/(gMLSS·d);
6.进水总氮<30mg/L.
以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。
厌氧生物处理是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,利用这类微生物分解废水中的有机物并产生甲烷和二氧化碳的过程。
高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。
(1)水解阶段水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
(2)发酵(或酸化)阶段发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
(3)产乙酸阶段在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。
(4)甲烷阶段这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。
酸化池中的反应是厌氧反应中的一段。
厌氧池是指没有溶解氧,也没有硝酸盐的反应池。缺氧池是指没有溶解氧但有硝酸盐的反应池。
酸化池---水解、酸化、产乙酸,限制甲烷化,有pH值降低现象。工艺简单,易控制操作,可去除部分COD。目的提高可生化性;
厌氧池---水解、酸化、产乙酸、甲烷化同步进行。需要调节pH,不易操作控制,去除大部分COD。目的是去除COD。
缺氧池---有水解反应,在脱氮工艺中,其pH值升高。在脱氮工艺中,主要起反硝化去除硝态氮的作用,同时去除部分BOD。也有水解反应提高可生化性的作用。
水解酸化池内部可以不设曝气装置,控制停留时间再水解、酸化阶段,不出现厌氧产气阶段,前两个阶段的COD去除率不是很高,因为他的目的只是将大分子的变成小分子有机物,一般去除率在20%左右,产气阶段的COD去除率一般在40%左右,但这是产生的硫化氢气体要进行除臭处理,且达到产气阶段的停留时间要较前两阶段长,也就是要出现厌氧状态。缺缺氧池内要设置曝气装置,控制溶解氧在0.3-0.8mg/l,利用兼氧微生物及生物膜来降解废水中的有机物,接触氧化池内的曝气器要慎重选择,既要保证供氧量,又要确保有利于生物膜的脱落、更新。一般不选用微孔曝气器作为池底的曝气器。
好氧池就是通过曝气等措施维持水中溶解氧含量在4mg/l左右,适宜好氧微生物生长繁殖,从而处理水中污染物质的构筑物;
厌氧池就是不做曝气,污染物浓度高,因为分解消耗溶解氧使得水体内几乎无溶解氧,适宜厌氧微生物活动从而处理水中污染物的构筑物;
缺氧池是曝气不足或者无曝气但污染物含量较低,适宜好氧和兼氧微生物生活的构筑物。
不同的氧环境有不同的微生物群,微生物也会在环境改变的时候改变行为,从而达到去除不同的污染物质的目的。
好氧池的作用是让活性污泥进行有氧呼吸,进一步把有机物分解成无机物。去除污染物的功能。运行好是要控制好含氧量及微生物的其他各需条件的最佳,这样才能是微生物具有最大效益的进行有氧呼吸。
厌氧处理是利用厌氧菌的作用,去除废水中的有机物,通常需要时间较长。厌氧过程可分为水解阶段、酸化阶段和甲烷化阶段。
水解酸化的产物主要是小分子有机物,使废水中溶解性有机物显著提高,而微生物对有机物的摄取只有溶解性的小分子物质才可直接进入细胞内,而不溶性大分子物质首先要通过胞外酶的分解才得以进入微生物体内代谢。例如天然胶联剂(主要为淀粉类),首先被转化为多糖,再水解为单糖。纤维素被纤维素酶水解成纤维二糖与葡萄糖。半纤维素被聚木糖酶等水解成低聚糖和单糖。
水解过程较缓慢,同时受多种因素的影响,是厌氧降解的限速阶段。在酸化这一阶段,上述第一阶段形成的小分子化合物在发酵细菌即酸化菌的细胞内转化为更简单的化合物并分泌到细菌体外,主要包括挥发性有机酸(VFA)、乳醇、醇类等,接着进一步转化为乙酸、氢气、碳酸等。酸化过程是由大量发酵细菌和产乙酸菌完成的,他们绝大多数是严格厌氧菌,可分解糖、氨基酸和有机酸。
在厌氧处理过程中,废水中的有机物经大量微生物的共同作用,被最终转化为甲烷、二氧化碳、水、硫化氢和氨等。在此过程中,不同微生物的代谢过程相互影响,相互制约,形成了复杂的生态系统。对高分子有机物的厌氧过程的叙述,有助于我们了解这一过程的基本内容。
高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。
水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
高分子有机物因相对分子量巨大,不能透过细胞膜,因此不可能为细菌直接利用。它们在第一阶段被细菌胞外酶分解为小分子。例如:纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被淀粉酶分解为麦芽糖和葡萄糖,蛋白质被蛋白质酶水解为短肽与氨基酸等。这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。水解过程通常较缓慢,因此被认为是含高分子有机物或悬浮物废液厌氧降解的限速阶段。多种因素如温度、有机物的组成、水解产物的浓度等可能影响水解的速度与水解的程度。水解速度的可由以下动力学方程加以描述:ρ=ρo/(1 Kh.T)
ρ ——可降解的非溶解性底物浓度(g/L)
ρo———非溶解性底物的初始浓度(g/L)
Kh——水解常数(d^-1)
T——停留时间(d)
发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
在这一阶段,上述小分子的化合物发酵细菌(即酸化菌)的细胞内转化为更为简单的化合物并分泌到细胞外。发酵细菌绝大多数是严格厌氧菌,但通常有约1%的兼性厌氧菌存在于厌氧环境中,这些兼性厌氧菌能够起到保护像甲烷菌这样的严格厌氧菌免受氧的损害与抑制。这一阶段的主要产物有挥发性脂肪酸、醇类、乳酸、二氧化碳、氢气、氨、硫化氢等,产物的组成取决于厌氧降解的条件、底物种类和参与酸化的微生物种群。与此同时,酸化菌也利用部分物质合成新的细胞物质,因此,未酸化废水厌氧处理时产生更多的剩余污泥。
在厌氧降解过程中,酸化细菌对酸的耐受力必须加以考虑。酸化过程pH下降到4时能可以进行。但是产甲烷过程pH值的范围在6.5~7.5之间,因此pH值的下降将会减少甲烷的生成和氢的消耗,并进一步引起酸化末端产物组成的改变。
在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。
其某些反应式如下:
CH3CHOHCOO- 2H2O —> CH3COO- HCO3- H 2H2 ΔG’0=-4.2KJ/MOL
CH3CH2OH H2O-> CH3COO- H 2H2O ΔG’0=9.6KJ/MOL
CH3CH2CH2COO- 2H2O-> 2CH3COO- H 2H2 ΔG’0=48.1KJ/MOL
CH3CH2COO- 3H2O-> CH3COO- HCO3- H 3H2 ΔG’0=76.1KJ/MOL
4CH3OH 2CO2-> 3CH3COO- 2H2O ΔG’0=-2.9KJ/MOL
2HCO3- 4H2 H ->CH3COO- 4H2O ΔG’0=-70.3KJ/MOL
这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。
甲烷细菌将乙酸、乙酸盐、二氧化碳和氢气等转化为甲烷的过程有两种生理上不同的产甲烷菌完成,一组把氢和二氧化碳转化成甲烷,另一组从乙酸或乙酸盐脱羧产生甲烷,前者约占总量的1/3,后者约占2/3。
最主要的产甲烷过程反应有:
CH3COO- H2O->CH4 HCO3- ΔG’0=-31.0KJ/MOL
HCO3- H 4H2->CH4 3H2O ΔG’0=-135.6KJ/MOL
4CH3OH->3CH4 CO2 2H2O ΔG’0=-312KJ/MOL
4HCOO- 2H ->CH4 CO2 2HCO3- ΔG’0=-32.9KJ/MOL
在甲烷的形成过程中,主要的中间产物是甲基辅酶M(CH3-S-CH2-SO3-)。
需要指出的是:一些书把厌氧消化过程分为三个阶段,把第一、第二阶段合成为一个阶段,称为水解酸化阶段。在这里我们则认为分为四个阶段能更清楚反应厌氧消化过程。