选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

阈值电压概述

阈值电压概述

如MOS管,当器件由耗尽向反型转变时,要经历一个 Si 表面电子浓度等于空穴浓度的状态。此时器 件处于临界导通状态,器件的栅电压定义为阈值电压,它是MOSFET的重要参数之一 。MOS管的阈值电压等于背栅(backgate)和源极(source)接在一起时形成沟道(channel)需要的栅极(gate)对source偏置电压。如果栅极对源极偏置电压小于阈值电压,就没有沟道(channel)。

查看详情

阈值电压造价信息

  • 市场价
  • 信息价
  • 询价

便携式接地线概述

  • 16mm2
  • 安科电气
  • 13%
  • 石家庄安科电气有限公司
  • 2022-12-07
查看价格

电压

  • 品种:断路器附件;型号:30;流规格:250A;
  • 新驰
  • 13%
  • 西安新驰电气有限公司
  • 2022-12-07
查看价格

电压

  • 品种:断路器附件;型号:30;说明:注;流规格:125A;
  • 新驰
  • 13%
  • 西安新驰电气有限公司
  • 2022-12-07
查看价格

电压

  • 品种:断路器附件;型号:30;说明:注;流规格:800A;
  • 新驰
  • 13%
  • 西安新驰电气有限公司
  • 2022-12-07
查看价格

电压

  • 品种:断路器附件;型号:30;流规格:125A;
  • 新驰
  • 13%
  • 西安新驰电气有限公司
  • 2022-12-07
查看价格

木工

  • 600mm
  • 台·月
  • 深圳市2010年7月信息价
  • 建筑工程
查看价格

木工

  • 600mm
  • 台·月
  • 深圳市2010年5月信息价
  • 建筑工程
查看价格

木工

  • 600mm
  • 台·月
  • 深圳市2010年4月信息价
  • 建筑工程
查看价格

木工

  • 600mm
  • 台·月
  • 深圳市2010年6月信息价
  • 建筑工程
查看价格

木工刨床

  • 刨削宽度单面600
  • 台班
  • 汕头市2012年4季度信息价
  • 建筑工程
查看价格

电压转换

  • LW8-10YH3/3
  • 1个
  • 2
  • 德力西
  • 中档
  • 含税费 | 含运费
  • 2018-01-25
查看价格

电压转换

  • LW8-10YH3/3
  • 1个
  • 1
  • 德力西
  • 中档
  • 含税费 | 含运费
  • 2018-01-09
查看价格

电压

  • QSM1QS90、 225型(3极)
  • 7167个
  • 1
  • 奇胜
  • 中高档
  • 不含税费 | 不含运费
  • 2015-12-16
查看价格

电压

  • QSM1QS90、800型(4极)
  • 2815个
  • 1
  • 奇胜
  • 中高档
  • 含税费 | 含运费
  • 2015-12-02
查看价格

电压

  • QSM1QS90 、100型(3极)
  • 2224个
  • 1
  • 奇胜
  • 中高档
  • 含税费 | 含运费
  • 2015-10-24
查看价格

阈值电压影响因素

一个特定的晶体管的阈值电压和很多因素有关,包括backgate的掺杂,电介质的厚度,栅极材质和电介质中的过剩电荷。

阈值电压背栅的掺杂

背栅(backgate)的掺杂是决定阈值电压的主要因素。如果背栅掺杂越重,它就越难反转。要反转就要更强的电场,阈值电压就上升了。MOS管的背栅掺杂能通过在介电层表面下的稍微的implant来调整。这种implant被叫做阈值调整implant(或Vt调整implant)。考虑一下Vt调整implant对NMOS管的影响。如果implant是由受主组成的,那么硅表面就更难反转,阈值电压也升高了。如果implant是由施主组成的,那么硅表面更容易反转,阈值电压下降。如果注入的donors够多,硅表面实际上就反向掺杂了。这样,在零偏置下就有了一薄层N型硅来形成永久的沟道(channel)。随着栅极偏置电压的上升,沟道变得越来越强的反转。随着栅极偏置电压的下降,沟道变的越来越弱,最后消失了。这种NMOS管的阈值电压实际上是负的。这样的晶体管称为耗尽模式NMOS,或简单的叫做耗尽型NMOS。相反,一个有正阈值电压的的NMOS叫做增强模式NMOS,或增强型NMOS。绝大多数商业化生产的MOS管是增强型器件,但也有一些应用场合需要耗尽型器件。耗尽型PMOS也能被生产出来。这样的器件的阈值电压是正的。耗尽型的器件应该尽量的被明确的标识出来。不能靠阈值电压的正负符号来判断,因为通常许多工程师忽略阈值电压的极性。因此,应该说“阈值电压为0.7V的耗尽型PMOS”而不是阈值电压为0.7V的PMOS。很多工程师会把后者解释为阈值电压为-0.7V的增强型PMOS而不是阈值电压为 0.7V的耗尽型PMOS。明白无误的指出是耗尽型器件可以省掉很多误会的可能性。

阈值电压电介质

电介质在决定阈值电压方面也起了重要作用。厚电介质由于比较厚而削弱了电场。所以厚电介质使阈值电压上升,而薄电介质使阈值电压下降。理论上,电介质成分也会影响电场强度。而实际上,几乎所有的MOS管都用纯二氧化硅作为gate dielectric。这种物质可以以极纯的纯度和均匀性生长成非常薄的薄膜;其他物质跟它都不能相提并论。因此其他电介质物质只有很少的应用。(也有用高介电常数的物质比如氮化硅作为gate dielectric的器件。有些作者把所有的MOS类晶体管,包括非氧化物电介质,称为insulated-gate field effect transistor(IGFET))

阈值电压栅极的物质成分

栅极(gate)的物质成分对阈值电压也有所影响。如上所述,当GATE和BACKGATE短接时,电场就施加在gate oxide上。这主要是因为GATE和BACKGATE物质之间的work function差值造成的。大多数实际应用的晶体管都用重掺杂的多晶硅作为gate极。改变多晶硅的掺杂程度就能控制它的work function。

阈值电压介电层与栅极界面上过剩的电荷

GATE OXIDE或氧化物和硅表面之间界面上过剩的电荷也可能影响阈值电压。这些电荷中可能有离子化的杂质原子,捕获的载流子,或结构缺陷。电介质或它表面捕获的电荷会影响电场并进一步影响阈值电压。如果被捕获的电子随着时间,温度或偏置电压而变化,那么阈值电压也会跟着变化。2100433B

查看详情

阈值电压概述常见问题

查看详情

阈值电压概述文献

基于双电源电压和双阈值电压的全局互连性能优化 基于双电源电压和双阈值电压的全局互连性能优化

基于双电源电压和双阈值电压的全局互连性能优化

格式:pdf

大小:195KB

页数: 8页

基于双电源电压和双阈值电压技术,提出了一种优化全局互连性能的新方法.文中首先定义了一个包含互连延时、带宽和功耗等因素的品质因子用以描述全局互连特性,然后在给定延时牺牲的前提下,通过最大化品质因子求得优化的双电压数值用以节省功耗.仿真结果显示,在65nm工艺下,针对5%,10%和20%的允许牺牲延时,所提方法相较于单电压方法可分别获得27.8%,40.3%和56.9%的功耗节省.同时发现,随着工艺进步,功耗节省更加明显.该方法可用于高性能全局互连的优化和设计.

低阈值电压RF MEMS开关的力学模型 低阈值电压RF MEMS开关的力学模型

低阈值电压RF MEMS开关的力学模型

格式:pdf

大小:195KB

页数: 5页

采用大激励极板的螺旋型膜开关在保持优异的高频特性的同时 ,可以获得较低的阈值电压。但是对这种结构的设计缺乏足够理论分析。文中将在 Ansys软件数值求解的基础上 ,研究缺口尺寸和开关阈值电压的关系 ,其结果对设计低驱动开关有一定指导意义

晶体管阈值电压概述

晶体管阈值电压(Threshold voltage):

场效应晶体管(FET)的阈值电压就是指耗尽型FET的夹断电压与增强型FET的开启电压。

(1)对于JFET:

对于长沟道JFET,一般只有耗尽型的器件;SIT(静电感应晶体管)也可以看成为一种短沟道JFET,该器件就是增强型的器件。

(2)对于MOSFET:

*增强型MOSFET的阈值电压VT是指刚刚产生出沟道(表面强反型层)时的外加栅电压。

①对于理想的增强型MOSFET(即系统中不含有任何电荷状态,在栅电压Vgs = 0时,半导体表面的能带为平带状态),阈值电压可给出为VT = ( SiO2层上的电压Vi ) + 2ψb = -[2εεo q Na ( 2ψb )] / Ci + 2ψb ,式中Vi ≈ (耗尽层电荷Qb) / Ci,Qb =-( 2εεo q Na [ 2ψb ] ),Ci是单位面积的SiO2电容,ψb是半导体的Fermi势(等于本征Fermi能级Ei与Ef之差)。

②对于实际的增强型MOSFET,由于金属-半导体功函数差φms 和Si-SiO2系统中电荷的影响, 在Vgs = 0时半导体表面能带即已经发生了弯曲,从而需要另外再加上一定的电压——“平带电压”才能使表面附近的能带与体内拉平。

因为金属-半导体的功函数差可以用Fermi势来表示:φms = (栅金属的Fermi势ψG )-(半导体的Fermi势ψB ) ,ψb = ( kT/q ) ln(Na/ni) ,对多晶硅栅电极(通常是高掺杂),ψg≈±0.56 V [+用于p型, -用于n型栅]。而且SiO2/Si 系统内部和界面的电荷的影响可用有效界面电荷Qf表示。从而可给出平带电压为 Vfb = φms-Qf /Ci 。

所以,实际MOSFET的阈值电压为VT = -[2εεo q Na ( 2ψb )] /Ci + 2ψb +φms-Qf /Ci 。

进一步,若当半导体衬底还加有反向偏压Vbs时,则将使沟道下面的耗尽层宽度有一定的增厚, 从而使阈值电压变化为:VT = -[2εεo q Na ( 2ψb+Vbs )] /Ci + 2ψb +φms-Qf /Ci 。

在制造MOSFET时,为了获得所需要的VT值和使VT值稳定,就需要采取若干有效的技术措施;这里主要是控制Si-SiO2系统中电荷Qf :其中的固定正电荷(直接影响到VT值的大小) 与半导体表面状态和氧化速度等有关(可达到<1012/cm2); 而可动电荷 (影响到VT值的稳定性) 与Na+等的沾污有关。因此特别需要注意在氧化等高温工艺过程中的清洁度。

*耗尽型MOSFET的阈值电压VT是指刚好夹断沟道时的栅极电压。情况与增强型器件的类似。

(3)对于BJT,阈值电压VTB是指输出电流Ic等于某一定值Ict (如1mA) 时的Vbe值。由VTB = (kT/q) ln(Ict/Isn) 得知:a)凡是能导致Ic发生明显变化的因素 (如掺杂浓度和结面积等),却对VTB影响不大,则BJT的VTB可控性较好;b) VTB 对于温度很敏感,将随着温度的升高而灵敏地降低,则可用VTB值来感测温度。 

查看详情

晶体管阈值电压简介

包装清单

晶体管阈值电压(Threshold voltage):

场效应晶体管(FET)的阈值电压就是指耗尽型FET的夹断电压与增强型FET的开启电压。

(1)对于JFET:

对于长沟道JFET,一般只有耗尽型的器件;SIT(静电感应晶体管)也可以看成为一种短沟道JFET,该器件就是增强型的器件。

(2)对于MOSFET:

*增强型MOSFET的阈值电压VT是指刚刚产生出沟道(表面强反型层)时的外加栅电压。

①对于理想的增强型MOSFET(即系统中不含有任何电荷状态,在栅电压Vgs = 0时,半导体表面的能带为平带状态),阈值电压可给出为VT = ( SiO2层上的电压Vi ) 2ψb = -[2εεo q Na ( 2ψb )] / Ci 2ψb ,式中Vi ≈ (耗尽层电荷Qb) / Ci,Qb =-( 2εεo q Na [ 2ψb ] ),Ci是单位面积的SiO2电容,ψb是半导体的Fermi势(等于本征Fermi能级Ei与Ef之差)。

②对于实际的增强型MOSFET,由于金属-半导体功函数差φms 和Si-SiO2系统中电荷的影响, 在Vgs = 0时半导体表面能带即已经发生了弯曲,从而需要另外再加上一定的电压——“平带电压”才能使表面附近的能带与体内拉平。

因为金属-半导体的功函数差可以用Fermi势来表示:φms = (栅金属的Fermi势ψG )-(半导体的Fermi势ψB ) ,ψb = ( kT/q ) ln(Na/ni) ,对多晶硅栅电极(通常是高掺杂),ψg≈±0.56 V [ 用于p型, -用于n型栅]。而且SiO2/Si 系统内部和界面的电荷的影响可用有效界面电荷Qf表示。从而可给出平带电压为 Vfb = φms-Qf /Ci 。

所以,实际MOSFET的阈值电压为VT = -[2εεo q Na ( 2ψb )] /Ci 2ψb φms-Qf /Ci 。

进一步,若当半导体衬底还加有反向偏压Vbs时,则将使沟道下面的耗尽层宽度有一定的增厚, 从而使阈值电压变化为:VT = -[2εεo q Na ( 2ψb Vbs )] /Ci 2ψb φms-Qf /Ci 。

在制造MOSFET时,为了获得所需要的VT值和使VT值稳定,就需要采取若干有效的技术措施;这里主要是控制Si-SiO2系统中电荷Qf :其中的固定正电荷(直接影响到VT值的大小) 与半导体表面状态和氧化速度等有关(可达到<1012/cm2); 而可动电荷 (影响到VT值的稳定性) 与Na 等的沾污有关。因此特别需要注意在氧化等高温工艺过程中的清洁度。

*耗尽型MOSFET的阈值电压VT是指刚好夹断沟道时的栅极电压。情况与增强型器件的类似。

(3)对于BJT,阈值电压VTB是指输出电流Ic等于某一定值Ict (如1mA) 时的Vbe值。由VTB = (kT/q) ln(Ict/Isn) 得知:a)凡是能导致Ic发生明显变化的因素 (如掺杂浓度和结面积等),却对VTB影响不大,则BJT的VTB可控性较好;b) VTB 对于温度很敏感,将随着温度的升高而灵敏地降低,则可用VTB值来感测温度。 2100433B

查看详情

mos晶体管阈值电压

MOS管的阈值电压等于backgate和source接在一起时形成channel需要的gate对source偏置电压。如果gate对source偏置电压小于阈值电压,就没有channel。一个特定的晶体管的阈值电压和很多因素有关,包括backgate的掺杂,电介质的厚度,gate材质和电介质中的过剩电荷。每个因素都会被简单的介绍下。

Bakegate的掺杂是决定阈值电压的主要因素。如果backgate越重掺杂,它就越难反转。要反转就要更强的电场,阈值电压就上升了。MOS管的backgate掺杂能通过在gate dielectric表面下的稍微的implant来调整。这种implant被叫做阈值调整implant(或Vt调整implant)。

考虑一下Vt调整implant对NMOS管的影响。如果implant是由acceptors组成的,那么硅表面就更难反转,阈值电压也升高了。如果implant是由donors组成的,那么硅表面更容易反转,阈值电压下降。如果注入的donors够多,硅表面实际上就反向掺杂了。这样,在零偏置下就有了一薄层N型硅来形成永久的channel。随着GATE偏置电压的上升,channel变得越来越强的反转。随着GATE偏置电压的下降,channel变的越来越弱,最后消失了。这种NMOS管的阈值电压实际上是负的。这样的晶体管称为耗尽模式NMOS,或简单的叫做耗尽型NMOS。相反,一个有正阈值电压的的NMOS叫做增强模式NMOS,或增强型NMOS。绝大多数商业化生产的MOS管是增强型器件,但也有一些应用场合需要耗尽型器件。耗尽型PMOS也能被生产出来。这样的器件的阈值电压是正的。

耗尽型的器件应该尽量的被明确的标识出来。不能靠阈值电压的正负符号来判断,因为通常许多工程师忽略阈值电压的极性。因此,应该说“阈值电压为0.7V的耗尽型PMOS”而不是阈值电压为0.7V的PMOS。很多工程师会把后者解释为阈值电压为-0.7V的增强型PMOS而不是阈值电压为+0.7V的耗尽型PMOS。明白无误的指出是耗尽型器件可以省掉很多误会的可能性。

为了区别不同的MOS管有很多特殊的符号。图7就是这些符 号。(符号A,B,E,F,G,和H被许多不同的作者使用)符号A和B分别是NMOS和PMOS管的标准符号。这些符号在工业界没有被普遍使用;相反,符号C和D分别代表NMOS和PMOS。这些符号被设计的很像NPN和PNP管。这么做能突出MOS和双极型电路之间基本的相似点。符号E和F用在backgates接到已知电位上时。每个MOS管都有一个backgate,所以它总得接到什么地方。符号E和F可能有点让人看不懂,因为读者必须自己推断bakgate的接法。尽管如此,这些符号还是非常流行,因为他们使电路同看上去更易读。符号G和H经常被用在耗尽型器件上,符号中从drain到source的粗线就表示了零偏置时的channel。符号I和J表示高电位drain的非对称晶体管,符号K和L表示drain和source都是高电位的对称晶体管。除了这些,MOS管还有其他很多电路符号;图1.24仅仅是其中的一小部分。

电介质在决定阈值电压方面也起了重要作用。厚电介质由于比较厚而削弱了电场。所以厚电介质使阈值电压上升,而薄电介质使阈值电压下降。理论上,电介质成分也会影响电场强度。而实际上,几乎所有的MOS管都用纯二氧化硅作为gate dielectric。这种物质可以以极纯的纯度和均匀性生长成非常薄的薄膜;其他物质跟它都不能相提并论。因此其他电介质物质只有很少的应用。(也有用高介电常数的物质比如氮化硅作为gate dielectric的器件。有些作者把所有的MOS类晶体管,包括非氧化物电介质,称为insulated-gate field effect transistor(IGFET))

gate的物质成分对阈值电压也有所影响。如上所述,当GATE和BACKGATE短接时,电场就出现在gate oxide上。这主要是因为GATE和BACKGATE物质之间的work function差值造成的。大多数实际应用的晶体管都用重掺杂的多晶硅作为gate极。改变多晶硅的掺杂程度就能控制它的work function。

GATE OXIDE或氧化物和硅表面之间界面上过剩的电荷也可能影响阈值电压。这些电荷中可能有离子化的杂质原子,捕获的载流子,或结构缺陷。电介质或它表面捕获的电荷会影响电场并进一步影响阈值电压。如果被捕获的电子随着时间,温度或偏置电压而变化,那么阈值电压也会跟着变化。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639