选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 装饰百科

硬质合金基体金刚石薄膜综合力学性能定量评价新技术

《硬质合金基体金刚石薄膜综合力学性能定量评价新技术》是依托上海交通大学,由陈明担任项目负责人的面上项目。

硬质合金基体金刚石薄膜综合力学性能定量评价新技术基本信息

硬质合金基体金刚石薄膜综合力学性能定量评价新技术项目摘要

以硬质合金基体上金刚石薄膜综合力学性能定量评价为目标,开展鼓泡法力学理论模型和试验技术研究。采用分子动力学模拟仿真和有限元耦合技术,从宏观和微观相结合角度分析研究鼓泡机理,建立独立膜变形力学理论模型;通过鼓泡试验,获得独立膜中心挠度与内压力关系曲线,拟合出薄膜的弹性模量和残余应力;从能量转化角度研究膜基界面动态剥离微观机理,建立膜基剥离的判别标准和临界裂纹扩展能量模型;根据鼓泡试验中球冠形独立膜稳定增长特征和内压力变化的临界点,应用临界裂纹扩展能量模型求得界面结合强度。本项目关于鼓泡法力学理论模型研究和鼓泡试验研究以及采用电解加工方法进行圆形独立膜试样制备技术的研究,具有重要的学术理论价值和实际应用价值,使我国在对硬质合金基体上金刚石薄膜综合力学性能进行定量评价方面的研究水平处于国际先进行列,促进金刚石薄膜材料的深度开发和在刀具和各种耐磨器件中的推广应用。

查看详情

硬质合金基体金刚石薄膜综合力学性能定量评价新技术造价信息

  • 市场价
  • 信息价
  • 询价

金刚石

  • 955925
  • 马圈
  • 13%
  • 拜恩(天津)科技有限公司
  • 2022-12-07
查看价格

金刚石

  • 806371
  • 马圈
  • 13%
  • 拜恩(天津)科技有限公司
  • 2022-12-07
查看价格

金刚石

  • 955918
  • 马圈
  • 13%
  • 拜恩(天津)科技有限公司
  • 2022-12-07
查看价格

金刚石系列

  • 800×800
  • 博德
  • 13%
  • 博德精工建材有限公司莆田总经销
  • 2022-12-07
查看价格

金刚石切片

  • Ф114mm
  • 博深
  • 13%
  • 长春市胜利五金机械有限公司
  • 2022-12-07
查看价格

金刚石

  • (综合)
  • 韶关市2010年7月信息价
  • 建筑工程
查看价格

金刚石

  • 韶关市2010年2月信息价
  • 建筑工程
查看价格

金刚石

  • 韶关市2009年8月信息价
  • 建筑工程
查看价格

金刚石

  • 韶关市2008年4月信息价
  • 建筑工程
查看价格

金刚石

  • 韶关市2007年10月信息价
  • 建筑工程
查看价格

金刚石

  • 综合
  • 1块
  • 3
  • 不含税费 | 不含运费
  • 2015-08-14
查看价格

金刚石

  • 30mm厚蓝金刚石
  • 44.5m²
  • 1
  • 中高档
  • 不含税费 | 含运费
  • 2020-12-30
查看价格

金刚石/CBN磨头

  • 适用范围 金属零件,硬质合金棒.玻璃/及玻璃钢.陶瓷.玉.水晶
  • 2287片
  • 1
  • 普通
  • 含税费 | 不含运费
  • 2015-11-27
查看价格

金刚石200×75×50

  • 金刚石 200×75×50
  • 1块
  • 1
  • 中档
  • 含税费 | 含运费
  • 2020-11-05
查看价格

金刚石砂轮

  • 材质 金刚石 规格 各种规格任选
  • 3620片
  • 4
  • 普通
  • 含税费 | 含运费
  • 2015-07-02
查看价格

硬质合金基体金刚石薄膜综合力学性能定量评价新技术基本信息

批准号

50475026

项目名称

硬质合金基体金刚石薄膜综合力学性能定量评价新技术

项目类别

面上项目

申请代码

E0509

项目负责人

陈明

负责人职称

教授

依托单位

上海交通大学

研究期限

2005-01-01 至 2007-12-31

支持经费

25(万元)

查看详情

硬质合金基体金刚石薄膜综合力学性能定量评价新技术常见问题

查看详情

硬质合金基体金刚石薄膜综合力学性能定量评价新技术文献

CVD金刚石薄膜窗口试样制备及力学性能测量 CVD金刚石薄膜窗口试样制备及力学性能测量

CVD金刚石薄膜窗口试样制备及力学性能测量

格式:pdf

大小:450KB

页数: 未知

本文以氢气和丙酮为原料 ,采用电子增强热丝CVD法 ,在硅片 (10 0 )基体上沉积一层金刚石薄膜 ,并采用光刻法和湿式各向异性刻蚀技术制备出金刚石薄膜自支撑窗口试样。实验结果表明 ,所制备的金刚石薄膜自支撑窗口刻蚀彻底 ,形状规则 ,能够很好地满足鼓泡法的实验要求 ,对CVD金刚石薄膜力学性能的测量具有重要意义。

钢结硬质合金型胎体性能及其热压金刚石钻头研究 钢结硬质合金型胎体性能及其热压金刚石钻头研究

钢结硬质合金型胎体性能及其热压金刚石钻头研究

格式:pdf

大小:450KB

页数: 5页

针对在硬而致密岩石中钻进时效低的难题,本文分析了碳化钨基热压钻头的金刚石出刃与岩石研磨性等岩性之间的内在联系,认为钻头的胎体成分及其性能是关键,硬而带脆性的胎体性能有利于金刚石出刃,从而能提高钻进速度。因此,从热压金刚石钻头的胎体成分与性能研究入手,经过反复的试验研究,试制出了热压钢结硬质合金型孕镶金刚石钻头。在硬而致密岩层中钻进的野外试验表明:与普通的碳化钨基钻头相比,钻进时效由0.5 m/h提高到1.18 m/h,钻头工作寿命由10 m/个提高到21.31 m/个,基本解决了在硬而致密岩层中钻进难的问题。试验结果表明,钢结硬质合金型胎体是一种性能优良的金刚石钻头胎体材料,该类型胎体的热压金刚石钻头是一种具有广谱性的金刚石钻头。

梯度硬质合金基体基体制备

要获得性能良好的涂层梯度硬质合金产品,涂层基体的制备是一个非常关键的问题。涂层必须与合适的基体结合才能达到预期的性能。具有梯度结构的表面富钴合金基体则使涂层切削刃强度更高,提高了涂层抗裂纹扩展能力,提高了基体与涂层的结合强度以及刀具的抗弯强度。硬质合金刀片划痕强度实验表明:基体成分相同情况下,梯度结构涂层刀片的基体与涂层结合强度比无梯度结构涂层刀片的基体与涂层结合强度大。硬质合金刀片的切削实验也表明:基体和涂层成分相同的情况下,有梯度结构涂层硬质合金刀片的切削性能比无梯度结构涂层硬质合金刀片的切削性能优良。

梯度硬质合金基体可通过分段烧结工艺制备。第一阶段预烧结,将试样在氮气保护下升温(升温速度为5℃/min),升温到400℃时保温1h脱蜡;温度到1380℃时,保温1h使合金致密化后,冷却至室温。第二阶段梯度烧结,在真空状态下,将预烧结后试样由室温升至烧结温度并保温2h后随炉冷却至室温。

含氮硬质合金梯度烧结是在真空气氛中进行的,合金内部的氮活度大于表面氮活度,内部的氮原子向表面进行扩散。而N原子与Ti原子之间存在很强的热力学耦合,所以,在液相烧结温度下,合金内部氮原子通过液相粘结剂向表面扩散的同时,表面的Ti原子也通过液相粘结剂向内部扩散,扩散将会导致合金表面的TiC、TiN、(Ti,W)(C,N)等立方相碳化物、氮化物以及碳氮化物发生分解。向合金内部扩散的金属原子与内部的碳,氮等原子发生反应生成一些硬质相碳化物、氮化物以及碳氮化物。由于金属原子向合金内部扩散导致在合金的表层形成体积空位,从而,液相粘结剂流向合金的表层,在合金的表层形成具有梯度结构的表层韧性区域,这样制备出梯度硬质合金基体。

查看详情

复杂形状WC-Co基体沉积高附着强度金刚石薄膜新技术项目摘要

从产业化角度研究复杂形状刀具集体沉积高结合强度金刚石薄膜新技术。采用化学机械法完成刀具基体的粗化预处理;沉积过程中添加促进剂并对基体表面温度进行控制;完成高速切削工艺参数优化。本项目将丰富和发展金刚石薄膜沉积机理及技术,发挥金刚石薄膜材料适于制造复杂形状刀具的优势,加速该类刀具产业化进程,完善其在高速切削中应用技术。.

查看详情

梯度硬质合金基体基体涂层

为改善硬质合金的切削加工性能,工业发达国家80%以上的硬质合金刀具都经过表面涂覆处理。几十年来,国内外相继开发了双涂层、三涂层以及多涂层的复合刀片,有的涂层数甚至达到几十层、上百层的水平。

硬质合金涂层技术通常可分为化学气相沉积(CVD)技术和物理气相沉积(PVD)技术两大类。

材料选择

刀具磨损机理研究表明,在高速切削时,刃尖温度最高可达900℃,此时刀具的磨损不仅是机械磨损,还有粘结磨损、扩散磨损及氧化磨损。因此,可将切削过程视为一个微区的物理化学变化过程。涂层材料的选择对于涂层能否在刀具上发挥其应有的作用有很大的影响。

碳化钛是一种高硬度耐磨化合物,有着良好的抗摩擦磨损性能;氮化钛的硬度稍低,但却有较高的化学稳定性,并可大大减少刀具与被加工工件之间的摩擦系数。从涂层工艺性考虑,两者均为较理想的涂层材料,但无论谈化钛还是氮化钛,单一的涂层均很难满足高速切削对刀具涂层的综合要求。

碳氮化钛(TiCN)是在单一的TiC晶格中,氮原子(N)占据原来碳原子(C)在点阵中的位置而形成复合化合物,TiCxNy中碳氮原子的比例有两种比较理想的模式,即TiC0.5N0.5和TiC0.3N0.7。由于TiCN具有TiC和TiN的综合性能,其硬度高于TiC和TiN,因此是一种较理想的刀具涂层材料。

在抗氧化磨损和抗扩散散磨损性能上,没有任何材料能与氧化铝(Al2O3)相比。但由于氧化铝与基体合金的物理、化学性能相差太大,单一的氧化铝涂层无法制备出理想的涂层刀具。多涂层及相关技术的出现,使涂层既可提高与基体的结合强度,同时又能具有多种材料的综合性能。

到目前为止,硬质合金刀片的涂层大致可分为4大系列:TiC/TiN、TiC/TiCN/TiN、TiC/Al2O3和TiC/Al2O3/TiN。前两者适用于普通半精及精切加工,后两者适用于高速及重负荷切削。

CVD技术

化学气相沉积(CVD)是硬质合金领域的一个重要技术突破,它借助一种或几种含有涂层元素的化合物或单质气体在放置有基材的反应室里的气相作用或在基材表面的化学反应而形成涂层,常见的CVD技术是以含C/N的有机物乙氰(CH3CN)作为主要反应气体,与TiCl4、H2、N2在700~900℃下产生分解、化学反应生成TiCN。涂层有效地提高了硬质合金制品表面硬度和耐磨性,延长硬质合金制品的使用寿命,减少损耗,提高机加工效率。

20世纪60年代以来,CVD技术被广泛应用于硬质合金可转位刀具的表面处理。80年代中后期,美国已有85%硬质合金工具采用了表面涂层处理,其中CVD涂层占到99%,到90年代中期,CVD涂层硬质合金刀片在涂层硬质合金刀具中仍占80%以上。

80年代末,Krupp.Widia开发的低温化学气相沉积(PCVD)技术达到了实用水平,其工艺处理温度已降至450~650℃,有效控制了η相的产生,可用于螺丝刀具、铣刀、模具的TiN、TiCN、TiC等涂层,但迄今为止,PCVD工艺在刀具涂层领域的应用并不广泛。

90年代中期,中温化学气相沉积(MTCVD)新技术的出现使CVD技术发生了革命性变革。采用MTCVD技术可获得致密纤维状结晶形态的涂层。涂层厚度可达8~10μm。这种涂层结构具有极高的耐磨性、抗热震性和韧性。MTCVD涂层硬质合金刀片适于在高温、高速、大负荷、干切条件下使用,其使用寿命可比普通涂层硬质合金刀片提高一倍左右。

我国从20世纪70年代初开始研究CVD涂层技术,由于该项技术专用性较强,国内从事研究的单位不多。80年代中期,我国CVD刀具涂层技术的开发达到实用化水平,工艺技术水平与当时的国际水平相当,但在随后的十多年里发展较为缓慢。我国的低温化学气相沉积(PCVD)技术的研究始于90年代初,PCVD技术主要用于模具涂层,目前在切削刀具领域的应用也十分有限90年代末期,我国开始中温化学气相沉积(MTCVD)技术的研发工作。

PVD技术

物理气相沉积主要为蒸发镀膜、离子镀膜和溅射镀膜3大类。真空蒸发镀膜是发展较早,应用也最广的一种PVD涂层技术,目前仍占有世界40%的市场,但用途范围正在缩小。这种技术是在真空条件下采用电阻、电子束等加热镀膜材料,使其熔化蒸发再沉积在合金基体表面形成镀膜。

离子镀膜是在真空条件下通入Ar气等,利用辉光放电使气体和镀膜材料部分离化,并使离子轰击靶打出靶上的材料离子,使其沉积在合金基体的表面。离子镀膜在切削工具超硬材料镀膜中应用较为成功的技术是多弧离子镀膜。

溅射镀膜是在真空室中,利用荷能离子轰击靶材表面,通过离子的动量传递轰击出靶材中的原子及其它粒子,并使其沉积在合金基体表面形成镀膜的技术。溅射镀膜能实现大面积快速沉积。

PVD技术出现于20世纪70年代末,由于其工艺处理温度可控制在500℃以下,因此可作为最终处理工艺用于高速钢类工具的涂层。由于采用PVD技术可大幅度提高高速钢工具的切削性能,所以该技术自80年代以来得到了迅速推广。

工业发达国家自90年代初就开始致力于硬质合金刀具PVD涂层技术的研究,90年代中期取得了突破性进展,PVD涂层技术已普遍应用于硬质合金铣刀、钻头、阶梯钻、油孔钻、铰刀、丝锥、可转位铣刀片、异型刀具、焊接刀具等的涂层处理。

我国PVD涂层技术的研发工作开阴极离子镀膜机,并开发了高速钢刀具TiN涂层工艺技术。90年代末国内成功开发出硬质合金TiNTiCNTiN多元复合涂层工艺技术并达到实用水平。但与国际发展水平相比,我国硬质合金刀具PVD涂层技术仍落后10年左右。目前国外刀具PVD涂层技术已发展到第4代,而国内尚处于第2代水平,且仍以单层TiN涂层为主。

PVD与CVD

对比目前约有80%的硬质合金刀具采用CVD技术进行超硬材料涂层。自20世纪80年代初TiNPVD涂层高速钢刀具投入工业应用以来,人们一直在探索能否用PVD代替CVD工艺对硬质合金刀片进行涂层。因为与CVD涂层技术相比较而言,PVD涂层技术有以下几个优点:(1)PVD技术沉积温度低,可以在500℃左右沉积TiN等超硬涂层,因此不会降低基体材料原有抗弯强度,涂层与基体间也不会产生η相,扩大了应用范围;(2)涂层具有微细结构,在涂层内部产生压应力,抗裂纹扩展能力强;(3)涂层表面光滑,比CVD涂层更能有效地阻止前刀面上的横裂纹扩展,同时可降低摩擦系数;(4)可以使用刃口锋利的刀具作基体,这一点对于高速切削非常重要。

尽管PVD涂层有CVD涂层难以比拟的优点,但实践表明,一般车削(部分铣削)刀片的TiC/Al2O3或TiC/Al2O3/TiNCVD涂层性能仍优于PVD涂层,这里除CVD技术可进行αAl2O3涂层外,涂层与基体的结合强度比PVD涂层高也是其性能优于PVD技术的一个重要因素。涂层硬质合金刀片的划痕实验表明,PVD涂层的临界载荷一般为30~40N,而CVD涂层的临界载荷可>90N;CVD涂层的厚度可达8~0μm,而PCD涂层的厚度必须控制在3~5μm,否则涂层容易产生剥落现象。此外硬质合金刀片CVD涂层工业化成本低于PVD涂层,这也是CVD技术应用更为广泛的原因之一。

CVD和PVD两种技术在硬质合金刀具涂层中仍将并存和相互补充,并因其自身的优点而在刀具涂层比例中占有各自的份额。一般说来,高速钢等钢制工具、锋利的硬质合金精切刀片和硬质合金整体多刃刀具采用PVD技术涂层比较理想。其余大部分硬质合金刀片均可采用CVD技术涂层。而且,CVD涂层也在不断发展,目前除采用中温CVD涂层以减小硬质合金强度的降低幅度外,还可采用计算机精确控制单层涂层厚度,避免涂层形成柱状晶,以满足精切硬质合金刀片的涂层要求。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639