选择特殊符号
选择搜索类型
请输入搜索
在这类晶体中,不存在独立的小分子,而只能把整个晶体看成一个大分子。由于原子之间相互结合的共价键非常强,要打断这些键而使晶体熔化必须消耗大量能量,所以原子晶体一般具有较高的熔点,沸点和硬度,在通常情况下不导电,也是热的不良导体,熔化时也不导电,但半导体硅等可有条件的导电。
原子间不再以紧密的堆积为特征,它们之间是通过具有方向性和饱和性的共价键相联接,特别是通过成键能力很强的杂化轨道重叠成键,使它的键能接近400KJ·mol-1。原子晶体中配位数比离子晶体少。
原子晶体,在这类晶体中,不存在独立的小分子,而只能把整个晶体看成一个大分子。由于原子之间相互结合的共价键非常强,要打断这些键而使晶体熔化必须消耗大量能量,所以原子晶体一般具有较高的熔点,沸点和硬度,在通常情况下不导电,也是热的不良导体。熔化时也不导电,但半导体硅等可有条件的导电。
由中性原子构成的晶体。原子间以共价键相联系。由于结合较牢,所以原子晶体的硬度较大,熔点较高。例如金刚石是由碳原子构成的原子晶体。石墨是由碳原子构成的但它不是原子晶体,它的每一层碳原子之间结合较牢,但层与层之间为分子间力,结合较弱,因此容易沿层间滑移。硅、硼等单质以及碳化硅、氮化硅等许多化合物晶体都是原子晶体。
原子晶体不导电、不易溶于任何溶剂,化学性质十分稳定。例如金刚石,由于碳原子半径较小,共价键的强度很大,要破坏4个共价键或扭歪键角都需要很大能量,所以金刚石的硬度最大,熔点达3570℃,是所有单质中最高的。又如立方BN的硬度近于金刚石。
原子晶体中,组成晶体的微粒是原子,原子间的相互作用是共价键,共价键结合牢固,原子晶体的熔、沸点高,硬度大,不溶于一般的溶剂,多数原子晶体为绝缘体,有些如硅、锗等是优良的半导体材料。原子晶体中不存在分子,用化学式表示物质的组成,单质的化学式直接用元素符号表示,两种以上元素组成的原子晶体,按各原子数目的最简比写化学式。常见的原子晶体是周期系第ⅣA族元素的一些单质和某些化合物,例如金刚石、硅晶体、SiO2、SiC等。(但碳元素的另一单质石墨不是原子晶体,石墨晶体是层状结构,以一个碳原子为中心,通过共价键连接3个碳原子,形成网状六边形,属过渡型晶体。)
规律:原子晶体熔沸点的高低与共价键的强弱有关。一般来说,半径越小形成共价键的键长越短,键能就越大,晶体的熔沸点也就越高。例如:金刚石(C-C)>二氧化硅(Si-O)>碳化硅(Si-C)晶体硅(Si-Si)。
1.原子间形成共价键,原子轨道发生重叠。原子轨道重叠程度越大,共价键的键能越大,两原子核的平均间距—键长越短。
2.一般说来:结构相似的分子,其共价键的键长越短,共价键的键能越大,分子越稳定。
3.一般情况下,成键电子数越多,键长越短,形成的共价键越牢固,键能越大。在成键电子数相同,键长相近时,键的极性越大,键能越大,形成时释放的能量就越多,反之破坏它消耗的能量也就越多,付出的代价也就越大。
结构特征:空间立体网状结构(如金刚石、晶体硅、二氧化硅等)。
原子晶体的结构特点:
①由原子直接构成晶体,所有原子间只靠共价键连接成一个整体。
②由基本结构单元向空间伸展形成空间网状结构。
③破坏共价键需要较高的能量。
在原子晶体的晶格结点上排列着中性原子,原子间以坚强的共价键相结合,如单质硅(Si)、金刚石(C)、二氧化硅(SiO2)、碳化硅(SiC)金刚砂、金刚石(C)和氮化硼BN(立方)等。以典型原子晶体二氧化硅晶体(SiO2方石英)为例,每一个硅原子位于正四面体的中心,氧原子位于正四面体的顶点,每一个氧原子和两硅原子相连。如果这种连接向整个空间延伸,就形成了三维网状结构的巨型“分子”。
图片“比较金刚石和石英的晶体和晶胞”为金刚石面心立方晶胞。金刚砂(SiC)的结构与金刚石相似,只是C骨架结构中有将与C相连的4个C原子换为Si,再以Si为中心形成顶角为C的正四面体,形成C-Si交替的空间骨架。石英(SiO2)结构中Si和O以共价键相结合,每一个Si原子周围有4个O原子排列成以Si为中心的正四面体,许许多多的Si-O四面体通过O原子相互联接而形成巨大分子。图片“比较金刚石和石英的晶体和晶胞”(b´)为面心立方晶胞。
结构为纯天然石膏矿石 ,成份为二水钙(CaSO4·2H2O)。
晶体管(transistor)是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。晶体管作为一种可变开关,基于输入的电压,控制流出的电流,开关速度可以非常之快,在实验室...
晶体管是统称。三极管是其中一种,三极管是双极型晶体管,体积较大,电流也较大。你说看到的三极管是分离原件,内部芯片也是很小的,一般在1平方毫米至5平方毫米,其他的是外壳,分离原件相对集成电路来说功率是大...
某些金属单质:晶体锗(Ge)等。
某些非金属化合物:氮化硼(BN)晶体、碳化硅、二氧化硅等。
非金属单质:金刚石、晶体硅、晶体硼等。
原子晶体在工业上多被用作耐磨、耐熔或耐火材料。金刚石、金刚砂都是极重要的磨料;SiO2是应用极广的耐火材料;石英和它的变体,如水晶、紫晶、燧石和玛瑙等,是工业上的贵重材料;SiC、BN(立方)、Si3N4等是性能良好的高温结构材料。
在复合式晶体开关中晶体管IGBT的并联
在复合式晶体开关中晶体管IGBT的并联
相同条件不同状态物质
一、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体>液体>气体。例如:NaBr(固)>Br2>HBr(气)。
二、不同类型晶体的比较规律
一般来说,不同类型晶体的熔、沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔、沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高有低。
例如:金刚石>食盐>干冰
三、同种类型晶体的比较规律
⒈原子晶体:熔、沸点的高低,取决于共价键的键长和键能,键长越短,键能越大,熔沸点越高。
例如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C碳化硅>晶体硅。
⒉离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,离子半径越小,离子所带电荷越多,离子键就越强,熔、沸点就越高。
例如:MgO>CaO,NaF>NaCl>NaBr>NaI。
⒊分子晶体:熔、沸点的高低,取决于分子间作用力的大小。一般来说,组成和结构相似的物质,其分子量越大,分子间作用力越强,熔沸点就越高。
例如:F222;CCl444。
⒋金属晶体:熔、沸点的高低,取决于金属键的强弱。一般来说,金属离子半径越小,自由电子数目越多,其金属键越强,金属熔沸点就越高。
例如:NaNa>K。
晶体开始融化时的温度叫做熔点。物质有晶体和非晶体,晶体有固定熔点,而非晶体则没有固定熔点。晶体又因类型不同而熔点也不同。一般来说晶体熔点从高到低为,原子晶体>离子晶体>金属晶体>分子晶体。在分子晶体中又有比较特殊的,如水、氨气等。它们的分子间因为含有氢键而不符合“同主族元素的氢化物熔点规律性变化”的规律。
熔点是一种物质的一个物理性质。物质的熔点并不是固定不变的,有两个因素对熔点影响很大。
一是压强,平时所说的物质的熔点,通常是指一个大气压时的情况;如果压强变化,熔点也要发生变化。熔点随压强的变化有两种不同的情况。对于大多数物质,熔化过程是体积变大的过程,当压强增大时,这些物质的熔点要升高;对于像水这样的物质,与大多数物质不同,冰熔化成水的过程体积要缩小(金属铋、锑等也是如此)当压强增大时冰的熔点要降低。
另一个就是物质中的杂质,我们平时所说的物质的熔点,通常是指纯净的物质。但在现实生活中,大部分的物质都是含有其它的物质的,比如在纯净的液态物质中溶有少量其他物质,或称为杂质,即使数量很少,物质的熔点也会有很大的变化,例如水中溶有盐,熔点就会明显下降,海水就是溶有盐的水,海水冬天结冰的温度比河水低,就是这个原因。饱和食盐水的熔点可下降到约-22℃,北方的城市在冬天下大雪时,常常往公路的积雪上撒盐,只要这时的温度高于-22℃,足够的盐总可以使冰雪熔化,这也是一个利用熔点在日常生活中的应用。
熔点实质上是该物质固、液两相可以共存并处于平衡的温度,以冰熔化成水为例,在一个大气压下冰的熔点是0℃,而温度为0℃时,冰和水可以共存,如果与外界没有热交换,冰和水共存的状态可以长期保持稳定。在各种晶体中粒子之间相互作用力不同,因而熔点各不相同。同一种晶体,熔点与压强有关,一般取在1大气压下物质的熔点为正常熔点。在一定压强下,晶体物质的熔点和凝固点都相同。熔解时体积膨胀的物质,在压强增加时熔点就要升高。
物理性质
非金属单质大多是分子晶体,少部分为原子晶体和过渡型的层状晶体。
单质共价键数大部分符合8-N规则
稀有气体:8-8=0(2-2=0),为单原子分子卤素,氢:8-7=1(2-1=1),为双原子分子VI A族的硫、硒、碲:8-6=2,为二配位的链形与环形分子V A族的磷、砷:8-5=3,为三配位的有限分子P4,As4,灰砷和黑磷为层状分子IV A族的碳、硅:8-4=4,为四配位的金刚石型结构。少数分子由于形成π键、大Π键或d轨道参与成键,键型发生变化,于是不遵守8-N规则。如N2、O2分子中的原子间的键不是单键;硼单质和石墨结构中,键的个数也不等于8-N个。
物理性质可分为三类
稀有气体及O2、N2、H2等:一般状态下为气体,固体为分子晶体,熔沸点很低多原子分子,S8、P4等:一般状态下为固体,分子晶体,熔沸点低,但比第一类高大分子单质,金刚石、晶态硅等:原子晶体,熔沸点高
化学性质
活泼非金属元素,如F2,Cl2,Br2,O2,P S等,能与金属形成卤化物、氧化物、硫化物,氢化物或含氧酸盐等。非金属元素之间也能形成卤化物、氧化物、无氧酸、含氧酸等。
大部分单质不与水反应,仅卤素与高温下的碳能与水发生反应。
非金属一般不与非氧化性稀酸发生反应,硼、碳、磷、硫、碘、砷等才能被浓硝酸、浓硫酸及王水氧化。
除碳、氮、氧外,一般可以和碱溶液发生反应,对于有变价的主要发生歧化反应;Si、B则是从碱溶液中置换出氢气;浓碱时,F2能氧化出O2
成键方式
非金属原子之间主要成共价键,而非金属元素与金属元素之间主要成离子键。
非金属原子之间成共价键的原因是,两种原子均有获得电子的能力,都倾向于获得对方的电子使自己达到稳定的构型,于是两者就共用电子对以达此目的。
而金属原子失去电子的能力较强,与非金属相遇时就一者失电子、一者得电子,双方均达到稳定结构。
多原子的共价分子常常出现的一种现象是轨道杂化,这使得中心原子更易和多个原子成键。
非金属原子之间形成的共价键中,除了一般的σ键和π键,还有一种大Π键。大Π键是离域的,可以增加共价分子或离子的稳定性。