选择特殊符号
选择搜索类型
请输入搜索
《电子学名词》第一版。
1993年,经全国科学技术名词审定委员会审定发布。
此词条暂无内容,欢迎您参与编辑,享受分享贡献知识的乐趣。
建议您在编辑词条之前,可先参考文档,了解更多关于词条规范的信息。同时也可先熟悉编辑器的使用。若有疑问,欢迎联系:
在线提问:
友情提示:编写内容之前需删除以上内容。
从电气工程上,所有的元件可以归纳为三类最基本的元件,即电阻,电感和电容.电阻的阻值与交流电的频率无关.电感的阻值(称为感抗)Xl=2πfL,即与交流电的频率成正比.频率越高,感抗越大.电容元件则与电感...
这个必须接合图纸来说明较清楚些,简单地说吧就是利用电容,电感量的不一样,所对不同频率产生的阻抗不一样.阻抗大的被阻挡,阻抗小的被通过.同时也可以利用电容,电感对某个频段产生偕振,使之通过或被阻挡.这就...
超宽带声表面波滤波器的设计
该文精确模拟了基于弛豫铁电单晶的声表面波(SAW)梯形滤波器的性能。首先介绍了由谐振器构成的梯形SAW滤波器的工作原理,利用QUCS软件建立了七阶梯形滤波器的仿真模型。结果表明,该单晶能实现高达620 MHz的超宽带SAW滤波器(中心频率1GHz),比传统压电材料的滤波器带宽高3倍;通过优化各支路谐振器的静态电容及传统梯型滤波器的结构,牺牲了一定的带宽,但获得了较高的带外抑制和过渡带的陡峭度;讨论了不同品质因数对滤波器带内插损的影响。
各路电报信号分别对不同频率的载波进行调制,得到一组频率各不相同的已调载波.经同一通路送往对方,由各个窄带滤波器和解调器等进行分离还原为各路电报信号2100433B
滤波器的主要参数:
中心频率(Center Frequency):滤波器通带的频率f0,一般取f0=(f1 f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插损最小点为中心频率计算通带带宽。
截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点来标准定义。相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。
通带带宽:指需要通过的频谱宽度,BW=(f2-f1)。f1、f2为以中心频率f0处插入损耗为基准。
插入损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。
纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰值。
带内波动(Passband Ripple):通带内插入损耗随频率的变化量。1dB带宽内的带内波动是1dB。
带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。理想匹配VSWR=1:1,失配时VSWR 大于1。对于一个实际的滤波器而言,满足VSWR小于1.5:1的带宽一般小于BW3dB,其占BW3dB的比例与滤波器阶数和插损相关。
回波损耗(Return Loss):端口信号输入功率与反射功率之比的分贝(dB)数,也等于20Log10ρ,ρ为电压反射系数。输入功率被端口全部吸收时回波损耗为无穷大。
阻带抑制度:衡量滤波器选择性能好坏的重要指标。该指标越高说明对带外干扰信号抑制的越好。通常有两种提法:一种为要求对某一给定带外频率fs抑制多少dB,计算方法为fs处衰减量;另一种为提出表征滤波器幅频响应与理想矩形接近程度的指标——矩形系数(KxdB大于1),KxdB=BWxdB/BW3dB,(X可为40dB、30dB、20dB等)。滤波器阶数越多矩形度越高——即K越接近理想值1,制作难度当然也就越大。
延迟(Td):指信号通过滤波器所需要的时间,数值上为传输相位函数对角频率的导数,即Td=df/dv。
带内相位线性度:该指标表征滤波器对通带内传输信号引入的相位失真大小。按线性相位响应函数设计的滤波器具有良好的相位线性度。
滤波器的分类方式较多,常见的一般分类方法有:
从频带区域选择上划分
滤波器大致可分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)和带阻滤波器
(BRF)四类,它们的幅度波长特性曲线如图3所示。
从滤波宽窄范围上划分
滤波器又可分为窄带滤波器(Narorwbandfilter)和宽带滤波器(Broadbandfilter),通常认为带宽小于0.8nm的为窄带滤波器,大于100nm的为宽带滤波器。随着对滤波器性能要求的不断提高以及应用范围的不断扩大,近些年又出现了超窄带滤彼器(Ult--arnarrowbandfilter)。和超宽带滤波器(Ultra一broadbandfilter),它们的带宽分别达到小于1pm和大于200nm的标准,这无疑是对滤波器滤波范围的进一步窄化和扩展,从而其性能也随之得到进一步提升。需要指出的是,许多器件尽管不被称为滤波器,但因其具有与滤波器相似的特性,故亦应将其归类为滤波器范畴,例如,光开关、光调制器、干涉仪、光栅等。
根据光干涉和衍射原理设计而成的光纤滤波器主要用来滤除信号中无用的频率(波长)成分。例如,中心波长为1550nm的窄带信号,其中包含较大范围其他波长信号干扰。以低通滤波器为例,滤波器滤波原理如图3所示。
正是由于滤波器可以实现上述滤波过程,使得光纤滤波器在诸如WDM光纤通信系统和光纤传感系统中有着广泛的应用。一些以光纤为基本元件研制的光纤滤波器也可用于气体的高精度定标、光纤激光器中的波长选择、光相干层析技术(OCT)以及具有特殊光谱函数的新型光学系统等中。例如,窄带带通滤波器可用作激光器,宽带带通滤波器可用于能量补偿,宽带带阻滤波器可用于掺饵光纤放大器(EDFA)增益平坦等。因其应用方面有所不同,故对滤波器中心响应波长、带宽和峰值功率等的要求亦有差异。
构成光纤滤波器的结构设计有多种选择,常见的有基于Sganac双折射环型、藕合器型、光纤光栅型、级联光纤或光栅型、级联高双折射光纤环镜型等口们,这些类型的光纤滤波器都具有各自的滤波区域、滤波范围以及可调谐范围。其中,采用级联方式设计光纤滤波器是一种新的方法。级联的概念,是指将光学元件(如光纤、光栅、祸合器等)按照一定拼接方式(如顺次串联、空间并联以及混合拼接等)构成光纤滤波器的设计新方法。这种新方法为设计新型可调谐光纤滤波器提供了更为宽阔的空间以及灵活的自由度。
通过选择不同的级联元件,或者采取不同的级联方式,可以有效扩大光纤滤波器的设计自由度,进一步丰富光纤滤波器的设计结构。并且,对不同的光纤或光栅等级联元件的某些光谱特性进行选择或整合,可设计并研制出结构新颖、性能优异的级联式新型高性能可调谐光纤滤波器。例如,根据实际需求,采用级联方式可以设计并研制诸如带通型、带阻型、边缘型滤波器、超宽带滤波器、超窄带滤波器以及通道滤波器等。