选择特殊符号
选择搜索类型
请输入搜索
该设计使用的核心元件是均有高居里温度(400℃以上)并且具有高压电系数(约 300C/N)的压电陶瓷,使得三向的灵敏度均在2.0pC/m/s2,其功能使用温度上可以达到200℃,其温度的稳定性误差不超过5%;在外形上简单轻巧(见俯视图),三个方向的测试接头可根据传感器自身的走向判断。
中高温三向压电加速度计,属于振动传感器领域。该发明区别与其他产品的特点主要表现在以下几个方面在测试的三个方向x、y、z上都采用技术含量比较高而且性能稳定的剪切式设计,保证了在三个方向上的各自横向灵敏度都小于5%,有效的提高了测试的精度,同时三个方向的频率响应均达到5k以上(<10%);
该产品主要用于需要三个方向进行振动测试并且又具有较高温度的场合,如旋转电机,航空航天旋转装置、发动机等。
加速度计由检测质量(也称敏感质量)、支承、电位器、弹簧、阻尼器和壳体组成。检测质量受支承的约束只能沿一条轴线移动,这个轴常称为输入轴或敏感轴。当仪表壳体随着运载体沿敏感轴方向作加速运动时,根据牛顿定律...
加速度计由检测质量(也称敏感质量)、支承、电位器、弹簧、阻尼器和壳体组成。检测质量受支承的约束只能沿一条轴线移动,这个轴常称为输入轴或敏感轴。当仪表壳体随着运载体沿敏感轴方向作加速运动时,根据牛顿定律...
磁电式速度传感器不需要物理接触,通过磁电感应原理来测量速度的,而压电加速度计需要必要的物理接触,通过感知力的大小而转化成对应的速度显示出来的,最大的区别应该是这个吧,还希望高手多多指点!
一种沟槽结构四臂压电式加速度计的仿真设计
介绍了现有四臂压电式加速度计的工作原理及ANSYS软件在压电式加速度计方面的应用。将传统的四臂压电式加速度的悬臂梁改用沟槽式结构。并使用ANSYS软件进行仿真分析,发现沟槽结构的加速度计的灵敏度可以高达0.633 5mV/gn,远高于平坦基体表面结构式加速度计的灵敏度(0.281 95mV/gn)。
基于八对差分电容极板的静电悬浮加速度计的设计
针对GOCE重力梯度卫星中使用的静电悬浮加速度计,对其采用的八对电容极板冗余设计的位移传感与反馈控制组合策略进行了讨论,并分析了其相对于CHAMP和GRACE重力卫星中使用的同类型加速度计的可靠度改善程度。
压电元件受力后产生的电荷量极其微弱,这电荷使压电元件边界和接在边界上的导体充电 到电压U=q/Ca(这里Ca是加速度计的内电容)。要测定这样微弱的电荷(或电压)的关键是防止导线、测量电路和加速度计本身的电荷泄漏。换句话讲,压电加速度计所用的前置放大器应具有极高的输 入阻抗,把泄漏减少到测量准确度所要求的限度以内。
压电式传感器的前置放大器有:电压放大器和电荷放大器。所用电压放大器就是高输入阻抗的比例放大 器。其电路比较简单,但输出受连接电缆对地电容的影响,适用于一般振动测量。电荷放大器以电容作负反馈,使用中基本不受 电缆电容的影响。在电荷放大器中,通常用高质量的元、器件,输入阻抗高,但价格也比较贵。
从压电式传感器的力学模型看,它具有“低通”特性,原可测量极低频的振动。但实际上由于低频尤其小振幅振动时,加速度 值小,传感器的灵敏度有限,因此输出的信号将很微弱,信噪比很低;另外电荷的泄漏,积分电路的漂移(用于测振动速度和位 移)、器件的噪声都是不可避免的,所以实际低频端也出现“截止频率”,约为0.1~1Hz左右。2100433B
压电加速度计又称压电式加速度传感器,它也属于惯性式传感器。它是利用某些物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。
常用的压电式加速度计的结构形式如图1。S是弹簧,M是质量块,B是基座,P是压电元件,R是夹持环。图a是中央安装压缩型,压电元件—质量块—弹簧系统装在圆形中心支柱上,支柱与基座连接。这种结构有高的共振频率。然而基座B与测试对象连接时,如果基座B有变形则将直接影响拾振器输出。此外,测试对象和环境温度变化将影响压电元件,并使预紧力发生变化, 易引起温度漂移。图c为三角剪切形,压电元件由夹持环将其夹牢在三角形中心柱上。加速度计感受轴向振动时,压电元件承受切应力。这种结构对底座变形和温度变化有极好的隔离作用,有较高的共振频率和良好的线性。图b为环形剪切型,结构简单,能做成极小型、高共振频率的加速度计,环形质量块粘到装在中心支柱上的环形压电元件上。由于粘结剂会随温度增高而变软,因此最高工作温度受到限制。