选择特殊符号
选择搜索类型
请输入搜索
将物体连同其直角坐标体系,沿不平行与任一坐标平面的方向,用平行投影法将其投射在单一投影面上所得到的图形,称为轴测投影(轴测图),如图7-2a 、b中投影P上所得到的图形。
轴测投影被选定的单一投影P,称为轴测投影面。直角坐标轴OX、OY、OZ在轴测投影P上的轴测投影OX、OY、OZ,称为轴测投影轴,简称轴测轴。
直角坐标体系 由三根相互垂直的轴(直角坐标轴)和相同的原点及其计量单位所构成的坐标体系。
坐标体系 确定空间每个点及其相应位置之间关系的基准体系。
直角坐标轴 在直角体系中垂直相交的坐标轴。
坐标平面 任意两根坐标轴所确定的平面。
原点 坐标轴的基准点。
轴测投影也属于平行投影,且只有一个投影面。当确定物体的三个坐标平面不与投射方向一致时,则物体上平行于三个坐标平面的平面图形的轴测投影,在轴测投影面上都得到反映,因此,物体的轴测投影才有较强的立体感。
轴测投影(轴测图)通常不画不可见轮廓的投影(虚线)。
1.轴间角
轴测投影中任意两根直角坐标轴在轴测投影面上的投影之间的夹角,称为轴间角。如图5-2所示,两轴侧轴之间夹角(∠XOY、∠XOZ、∠YOZ),用它来控制轴测投影的形状变化。
2. 轴向伸缩系数
直角坐标轴的轴测投影的单位长度,与相应直角坐标轴上的单位长度的比值,称为轴向伸缩系数,如图所示,其中,用p表OX轴轴向伸缩系数,q表示OY轴轴向伸缩系数,r表示OZ轴轴向伸缩系数,用轴向伸缩系数控制轴测投影的大小变化。
轴测投影同样具有平行投影的性质:
(1)若空间两直线段相互平行,则其轴测投影相互平行。
(2)凡与直角坐标轴平行的直线段,其轴测投影必平行于相应的轴测轴,且其伸缩系数于相应轴测轴的轴向伸缩系数相同。因此,画轴测投影时,必沿轴测轴或平行于轴测轴的方向才可以度量。轴测投影因此而得名。
(3)直线段上两线段长度之比,等于其轴测投影长度之比。
按获得轴测投影的投射方向对轴测投影面的相对位置不同,轴测投影可分为两大类:
1.正轴测投影
用正投影法得到的轴测投影,称为正轴测投影。
2.斜轴测投影
用斜投影法得到的轴测投影,称为斜轴测投影。
由于确定空间物体位置的直角坐标轴对轴测投影面的倾角大小不同,轴向伸缩系数也随之不同,故上述两类轴测投影又个分为三种:
正轴测投影分为:
(1)正等轴测投影(正等轴测图)
三个轴向伸缩系数均相等(p= q=r)的正轴测投影,称为正等轴测投影(简称正等测)。
(2)正二等轴测投影(正二轴测图)
两个轴向伸缩系数相等(p=q≠r或p=r≠q或q=r≠p)的正轴测投影,称为正二等轴测投影(简称正二测)。
(3)正三轴测投影(正三轴测图)。
三个轴向伸缩系数均不相等(p≠q≠r)的正轴测投影,称为正三轴测投影(简称正三测)。
斜轴测投影分为:
(1)斜等轴测投影(斜等轴测图)
三个轴向伸缩系数均相等(p=q=r)的斜轴测投影,称为斜等轴测投影(简称斜等测)。
(2)斜二等轴测投影(斜二轴测图)
轴测投影面平行一个坐标平面,且平行于坐标平面的两根轴的轴向伸缩系数相等(p=q≠r或p=r≠q 或q=r≠p)的斜轴测投影,称为斜二等轴测投影(简称斜二测)。
(3)斜三轴测投影(斜三轴测图)
三个轴向伸缩系数均不等(p≠q≠r)的斜轴测投影,称为斜三轴测投影(简称斜三测)。
在实际工作中,正等测、斜二等测用得交多,正(斜)三测的作图较繁,很少采用。本章只介绍正等测和斜二测的画法。
正等轴测投影的形成
正等轴测投影的投射方向S垂直于轴测投影间P,如图2中(a)所示,且确定物体空间位置的三个坐标平面与轴测投影面均倾斜,其上的三根直角坐标轴与轴测投影面的倾角均相等,物体上平行于三个坐标平面的平面图形的正等轴测投影的形状和大小的变化均相同,因此,物体的正等轴投影的立体感颇强。
正等轴测投影的轴间角和轴向伸缩系数
1、轴间角
正等轴测投影,由于物体上的三根直角坐标轴与轴测投影面的倾角均相等,因此,与之相对应的轴测轴之间的轴间角也必须相等,即∠XOY=∠YOZ=∠XOZ=120°,如图2中(a)所示。2、轴向伸缩系数
正等轴测投影中OX、OY、OZ轴的轴向伸缩系数相等,即 p=q=r。经数学推导得:p=q=r≈0.82。为作图方便,取简化轴向伸缩系数p=q=r=1,这样,画出的图形,在沿各轴向长度上均分别放大到1/0.82≈1.22倍,如图2中(c)所示。
平面立体的正等轴测图画法
由多面正投影图画轴测图时,应先选好适当的坐标体系,画出对应的轴测轴,然后,按一定方法作图,画平面立体轴测图的
基本方法是按坐标画出各顶点的轴测图,称为坐标法,见图3
两例。
曲面立体的正等轴测图的画法
例如图4中画法。2100433B
将形体放置成使它的三条坐标轴与轴测投影面具有相同的夹角(35°16′),然后向轴测投影面作正投影。用这种方法作出的轴测图称为正等轴测图。
正等轴测图X,Y,Z三个轴之间的角度是120°,并且三个轴的轴向伸缩系数都是1 斜二轴测图X,Y轴之间的角度是135°,X,Z轴之间的角度是90°,Y,Z轴之间的角度是135°,且Y轴的轴向伸缩率为0...
先要建立一个能够进行轴测图绘制的图面。第一步:鼠标右键注意是右键单击最下面一行“捕捉”,然后设置,勾选“等轴测捕捉”,然后确定。再用鼠标左键单击最下面一行的“正交”,这样,就可以在上面绘制轴测图了。第...
你好 快捷键:DS 回车。如图,按F5,可以切换。希望对你有帮助,还望及时采纳回答
轴测投影的形成
将物体连同其直角坐标体系,沿不平行于任一坐标平面的方向,用平行投影法将其投射在单一投影面上所得到的图形,称为轴测投影(轴测图),如图1中(a )、(b)中投影P上所得到的图形。
轴测投影被选定的单一投影P,称为轴测投影面。直角坐标轴OX、OY、OZ在轴测投影P上的轴测投影OX、OY、OZ,称为轴测投影轴,简称轴测轴。
直角坐标体系 由三根相互垂直的轴(直角坐标轴)和相同的原点及其计量单位所构成的坐标体系。
坐标体系 确定空间每个点及其相应位置之间关系的基准体系。
直角坐标轴 在直角体系中垂直相交的坐标轴。
坐标平面 任意两根坐标轴所确定的平面。
原点 坐标轴的基准点。
轴测投影也属于平行投影,且只有一个投影面。当确定物体的三个坐标平面不与投射方向一致时,则物体上平行于三个坐标平面的平面图形的轴测投影,在轴测投影面上都得到反映,因此,物体的轴测投影才有较强的立体感。
轴测投影(轴测图)通常不画不可见轮廓的投影(虚线)。
轴间角和轴向伸缩系数
1.轴间角
轴测投影中任意两根直角坐标轴在轴测投影面上的投影之间的夹角,称为轴间角。
2. 轴向伸缩系数
直角坐标轴的轴测投影的单位长度,与相应直角坐标轴上的单位长度的比值,称为轴向伸缩系数,用轴向伸缩系数控制轴测投影的大小变化。
轴测投影的基本性质
轴测投影同样具有平行投影的性质:
(1)若空间两直线段相互平行,则其轴测投影相互平行。
(2)凡与直角坐标轴平行的直线段,其轴测投影必平行于相应的轴测轴,且其伸缩系数于相应轴测轴的轴向伸缩系数相同。因此,画轴测投影时,必沿轴测轴或平行于轴测轴的方向才可以度量。轴测投影因此而得名。
(3)直线段上两线段长度之比,等于其轴测投影长度之比。
轴测投影的分类
按获得轴测投影的投射方向对轴测投影面的相对位置不同,轴测投影可分为两大类:
1.正轴测投影
用正投影法得到的轴测投影,称为正轴测投影。
2.斜轴测投影
用斜投影法得到的轴测投影,称为斜轴测投影。
由于确定空间物体位置的直角坐标轴对轴测投影面的倾角大小不同,轴向伸缩系数也随之不同,故上述两类轴测投影又个分为三种:
正轴测投影分为:
(1)正等轴测投影(正等轴测图)
三个轴向伸缩系数均相等(p= q=r)的正轴测投影,称为正等轴测投影(简称正等测)。
(2)正二等轴测投影(正二轴测图)
两个轴向伸缩系数相等(p=q≠r或p=r≠q或q=r≠p)的正轴测投影,称为正二等轴测投影(简称正二测)。
(3)正三轴测投影(正三轴测图)。
三个轴向伸缩系数均不相等(p≠q≠r)的正轴测投影,称为正三轴测投影(简称正三测)。
斜轴测投影分为:
(1)斜等轴测投影(斜等轴测图)
三个轴向伸缩系数均相等(p=q=r)的斜轴测投影,称为斜等轴测投影(简称斜等测)。
(2)斜二等轴测投影(斜二轴测图)
轴测投影面平行一个坐标平面,且平行于坐标平面的两根轴的轴向伸缩系数相等(p=q≠r或p=r≠q 或q=r≠p)的斜轴测投影,称为斜二等轴测投影(简称斜二测)。
(3)斜三轴测投影(斜三轴测图)
三个轴向伸缩系数均不等(p≠q≠r)的斜轴测投影,称为斜三轴测投影(简称斜三测)。
在实际工作中,正等测、斜二等测用得交多,正(斜)三测的作图较繁,很少采用。本章只介绍正等测和斜二测的画法。
第2版前言
第1版前言
第一章 画图基本知识与技能
1-2 字体练习
1-3 几何作图
练习:等分作图
试题:圆弧连接
1-4 平面图形画法
No.1作业:抄画平面图形
1-5 平面图形尺寸注法
练习:尺寸注法
试题:给平面图形标注尺寸
第二章 轴测图的画法
2-1 正等轴测图
练习:抄画正等轴测图
N0.2 作业:抄画轴测图
2-2斜二轴测图
练习:将正等轴测图改画成斜二轴测图
第三章 三视图的基本知识
3-3 三视图形成的过程及其规律
练习:三视图与轴测图对照
No.3作业:根据轴测图画三视图
第四章 点、直线、平面的三视图
4-1 点的三视图
练习:点的三视图及其应用
试题:作点的三视图
4-2 直线的三视图
练习:物体与直线
试题:作直线的三视图
4-3 平面的三视图
练习:物体与平面
试题:作平面的三视图
第五章 基本体的三视图及尺寸标注
5-1 平面体的三视图
练习:补视图、标尺寸、表面找点
试题:补视图、标尺寸、表面找点
5-2 回转体的三视图
练习:补视图、标尺寸、表面找点
试题:补视图、标尺寸、表面找点
第六章 切割体的三视图及尺寸标注
6-1 画切割体的三视图
No,4作业:根据轴测图画切割体的三视图
6-2 读切割体的三视图
试题:补视图、补缺线
6-3 切割体的尺寸标注
练习:在三视图上给切割体标注尺寸
第七章 叠加体的三视图及尺寸标注
7-1 相贯线的简化画法
练习:用简化画法画相贯线
7-2 画叠加体的三视图
N0.5作业:根据轴测图画叠加体的三视图
7-3 读叠加体的三视图
试题:补视图、补缺线
7-4 叠加体的尺寸标注
练习:在三视图上给叠加体标尺寸
第八章 机件内外结构形状的表达方法
8-1 视图
练习:补作各种视图
试题:补作各种视图
8-2 剖视图
试题:作各种剖视图
No.6作业:表达方法应用
8-3 断面图
试题:作各种断面图
第九章 零件图的绘制与识读
9-6 零件技术要求的标注
练习:零件技术要求的标注
9-7 画零件图
练习:由轴测图画零件草图
9-8 读零件图
试题:读零件图回答问题
第十章 标准件和常用件的表示法
10-1 螺纹及螺纹紧固件的表示法
试题:螺纹及螺纹联接的规定画法
10-2 键、销联接的表示法
练习:键、销联接的画法
10-4 直齿圆柱齿轮的规定画法
练习:直齿圆柱齿轮的画法
第十一章 装配图的绘制与识读
11-2 装配图的画法与绘制
No.7大型作业:根据零件图画装配图
11-4 读装配图
试题:读装配图,完成各种任务
附录
附录A 《机械制图双标教学法试题库》使用说明
附录B 《机械制图》考试大纲(题库结构表)
一,正等轴测图
二,三维绘图基础
三,曲面模型
四,三维实时观察
五,实体造型
六,模型空间和图纸空间
七,由实体模型提取三面投影图
八,图形渲染
附录,AutoCAD 2000命令索引
内容介绍
《边学边做,看机械图就这么简单》旨在帮助读者在短期内根据二维视图想象零件的三维模型。主要内容包括:投影与视图、正等轴测图、长方体和圆柱的视图与正等轴测图、其他基本几何体的视图、组合体、机械图样的基本规定和图样画法、标准件和常用件、零件图、装配图。
《边学边做,看机械图就这么简单》配有大量三维立体图(轴测图),且作图步骤清晰,注释简洁明了。在重点章节后面安排练习题(附答案),可帮助读者在边学边做(画图)的过程中,轻松地从二维(平面)走向三维(立体)思维世界,在脑海里逐步建立起基本图库,并且不断扩充,在短时间内成为识图高手。
2100433B