选择特殊符号
选择搜索类型
请输入搜索
含稠环的化合物,在命名时应选具有最多累计双键的环系作母体,再把最能表明结构性质的官能团放在母体上。地西泮的母体为苯并二氮杂卓,计有5个双键,环上还有一个饱和位置。应用额外氢(Indicated Hydrogen 指示氢)表示饱和位置,以避免出现歧义。表示的方法为位置上加H,这样来区别可能的异构体。1H-苯并二氮杂卓 2H-苯并二氮杂卓 3H-苯并二氮杂卓 地西泮
此外地西泮的母环上只有4个双键,除用额外氢表示的一个外,还有两个饱和位置采用加氢碳原子来表示。根据命名原则,优先用额外氢表示结构特征的位置,在本例中为2位酮基的位置,其余两个饱和位置1、3位用氢(化)表示。
故地西泮的命名为1-甲基-5-苯基-7-氯-1,3-二氢-2H-1,4-苯并二氮杂卓-2-酮。其中杂环上1,4-代表氮原子的位置。
你好,定义异形柱。
一共有几个?这么难计算吗?你的目的是什么呢?
我画图自然地面相对标高-1.05m,车库地标高-1.53,顶0.66,车库与室内地面(±0.000)连成一体,请问我该如何定义楼层,如何画 楼层正常定义即可,车库可以设置为-1层,底标高为-1。53,...
深基坑定义
深基坑 基坑工程简介: 基坑工程主要包括基坑支护体系设计与施工和土方开挖,是一项综合 性很强的系统工程。它要求岩土工程和结构工程技术人员密切配合。基坑 支护体系是临时结构,在地下工程施工完成后就不再需要。 基坑工程具有以下特点: 1)基坑支护体系是临时结构,安全储备较小,具有较大的风险性。基 坑工程施工过程中应进行监测,并应有应急措施。在施工过程中一旦出现 险情,需要及时抢救。 2)基坑工程具有很强的区域性。如软粘土地基、黄土地基等工程地质 和水文地质条件不同的地基中基坑工程差异性很大。同一城市不同区域也 有差异。基坑工程的支护体系设计与施工和土方开挖都要因地制宜,根据 本地情况进行,外地的经验可以借鉴,但不能简单搬用。 3)基坑工程具有很强的个性。基坑工程的支护体系设计与施工和土方 开挖不仅与工程地质水文地质条件有关,还与基坑相邻建(构)筑物和地 下管线的位置、抵御变形的能力、重要性,以
图形的定义
图形的定义 :区别于标记、标志与图案,他既不是一种单纯的符号,更不是单 一以审美为目的的一种装饰, 而是在特定的思想意识支配下的多某一个或多个视 觉元素组合的一种蓄意的刻画和表达形式。 它是有别于词语、 文字、语言的视觉 形式,可以通过各种手段进行大量复制,是传播信息的视觉形式。 图形的特征 :图形设计范围极为广泛,它覆盖着艺术造型、涉及思维、语言符 号、心理研究、大众传播、市场经营等方面的知识。 图形设计的基本特征概括起来大致有几个方面: 独特性 文化性 单纯性 认同性 象征性 传达性 图形的历史与发展 :图形的发展与人类社会的历史息息相关。 早在原始社会, 人类就开始以图画为手段,记录自己的理想、活动、成就,表达自己的情感,进 行沟通和交流。 当时绘画的目的并非是为了欣赏美, 而是有表情达意的作用, 被 作为一种沟通交流的媒介,这就成为最原始意义上的图形。 在人类社会的语言期与文字期中
此溶液由A、B两种溶液组合而成:
A溶液:0.02克百里酚蓝及0.01克甲酚红溶于2毫升的乙醇
B溶液:0.8克碳酸氢钠及7.48克的氯化钾溶于90毫升蒸馏水
将A、B剂混合后以9:1000的比例以蒸馏水稀释即得碳酸氢盐指示剂。
2017年12月4—9日,以“氢产业 氢生活 氢未来”为主题的第二届氢能与燃料电池产业发展国际交流会暨第一届中国(佛山)国际氢能与燃料电池技术及产品推介会系列活动,在佛山市南海区举办。
姜寰摄
大咖云聚,精彩纷呈
打造氢能产业技术与标准创新发展盛会
国家氢能领域 团体标准发布
在12月6日“氢能周”的开幕式上,由中国绿色设计与制造产业创新联盟等单位倡议成立的“中国氢能产业联盟”正式发起,同时,氢燃料电池氢气品质团体标准《质子交换膜燃料电池汽车用燃料氢气》(T/CECA-G 0014-2017,T/HEAC 0001-2017)发布。
燃料电池汽车(FCV)正在成为世界能源和交通领域的研发热点,而质子交换膜燃料电池(PEMFC)具有能效高和低污染的特点,是FCV汽车采用的主流燃料电池类型。随着燃料电池汽车与加氢设施的商业化示范与产业化推进,目前世界各国都在积极开展氢气品质标准研究和制定工作,美国、日本、韩国、欧盟和ISO国际标准化组织等均已制定相关标准或标准草案。
《质子交换膜燃料电池汽车用燃料氢气》(T/CECA-G 0014-2017,T/HEAC 0001-2017)是中国节能协会、中国绿色设计与制造产业创新联盟和中国氢能产业联盟联合发布的氢能领域团体标准,旨在规定FCV用氢气的品质,规范其测试方法,在保证燃料电池的性能与耐久性的同时,降低其使用成本。
该标准适用于质子交换膜燃料电池汽车用氢气,规定了燃料电池汽车用氢气的术语和定义、要求、氢中主要杂质气体,如氧气、总硫、氨、一氧化碳、二氧化碳、卤化物、水、总烃及氦、氩、氮等惰性气体的测试方法,还规定了氢气的抽样、采样与浓度计算方法,氢气的包装、标志与储运,以及安全要求。在制定过程中始终与国际相关标准保持同步,对推动国内燃料电池技术在相关领域的研发和应用能够起到引导作用,同时对提高我国燃料电池用氢气品质具有重要的指导和规范意义。
发起成立广东省 氢能和燃料电池 汽车产业协会
氢能的发展近年来逐步升级为“国家战略”。2016年出台的《国家创新驱动发展战略纲要》提到,将“开发氢能、燃料电池等新一代能源技术”列为战略任务之一;2017年工信部、科技部、发改委联合发布的《汽车产业中长期发展规划》提出,逐步扩大燃料电池汽车试点示范范围。
广东省经过多年的发展已具备了“制氢—储氢&运氢—n”有影响力的协会之一,对我国的新能源汽车的产业政策、技术动态、商业模式、车辆运营、充电运维等有深刻的理解和丰富产业协同组织经验,将牵头广东省氢能和燃料电池汽车产业协会筹备组的具体工作。通过协会这一平台,深度交流、相互学习,共同推动广东省氢能和燃料电池汽车产业的快速、健康发展。
创新“利用现有 加油站改造为 加氢加油合建站” 的建设模式
在开幕式上,加氢加油合建站建设正式启动。该项目是中石化广东石油分公司和中石油广东分公司与佛山市、云浮市充分利用各自优势展开的战略合作,利用现有加油站增设加氢、充电功能等,提供更稳定的成品油供应和氢气、汽车充电等新能源供应。
目前,中石化已确定南海区樟坑(青龙)加油站和吉祥加油站实施加氢加油合建站改造项目。樟坑(青龙)加油站位于南海区西樵镇山根村樟坑村樟坑(青龙)线入口南面,占地6666㎡,原加油站有30m3埋地汽油罐3个,30m3埋地柴油罐2个,总罐容为120m3,属于二级加油站。项目拟在原有加油站基础上增设加氢功能,合建为加氢加油合建站。站内布置情况为将原油罐区迁至加油棚入口位置,卸油口迁至加油站入口右侧绿化带,腾空出的原油罐区作为加氢设备区。该合建站的合建形式为二级加油站与三级加氢站合建,合建后为一级加氢加油合建站。
在此之前,佛山南海在加氢站的建设上已走在全国前列,探索建立了商用加氢站审批、建设流程,建成商业化运营的加氢站。
氢能源现代 有轨电车亮相
氢能源有轨电车作为区域化交通运输的重要补充,适用于中小城市骨干运输线路及中心城加密线、补充运力线,具有造型美观、灵活编组、绿色环保等特点,为人类快捷、舒适、低碳出行提供了智慧解决方案。
该车采用氢燃料电池作为动力源,唯一的产物是水,做到污染物“零排放”。车辆最高时速70km/h,单次加氢可持续运行100公里,真正实现了有轨电车的无接触网长距离运行。作为区域化交通运输的重要补充,车辆采用3节编组,车厢内部宽敞,设有60个座位,最多可载客360人,头尾两端均设驾驶室,可双向行驶。车辆采用先进的100%低地板技术,车门处地板距地面仅0.345米,与站台基本持平。
该车将用于佛山市高明区现代有轨电车示范线项目,项目规划线路全长约为17.4公里(高明汽车站—科教园站),设车站20座。首期工程线路全长约6.5公里,全部为地面线路,其南起沧江路与中山路交叉口,北止于西江新城智湖,共设置沧江路站、跃华路站、怡乐路站、荷城站、文化中心站、明湖公园站、新江路站、体育中心站、阮涌站、智湖站10座车站,其中荷城站与未来的佛山地铁二号线延长线实现接驳换乘,并在智湖站附近建设车辆基地及加氢站1座,调度指挥中心设置于车辆基地的综合楼内。
佛山高明现代有轨电车示范线是以氢能源为动力的有轨电车示范线,项目建成后将对氢能源有轨电车在国内的示范推广起到积极的促进作用。
搭建全球顶尖 氢能与燃料电池 对话平台
12月6日,氢能与燃料电池的权威专家、行业大咖齐聚佛山南海。国际交流会上,各位专家将共同探讨产业政策导向与未来发展变革脉动,探究前瞻技术路径与应用前景趋势,发掘行业面临核心问题并寻找破解良方。
其中,中国工程院院士和ISO/TC 197主席Andrei V Tchouvelev博士将分别围绕“中国氢能与燃料电池技术进展”和“ISO/TC 197在氢能国际标准化领域的工作介绍”作主题报告。
来自各国的专家学者和业界精英将围绕“制氢和储氢技术”“氢能应用”和“加氢站建设”等主题进行分享介绍。其中,佛山市副市长、佛山对口帮扶云浮指挥部总指挥许国分享佛山及云浮两市加氢站建设经验。
零排放,全生态
打造氢能与燃料电池技术及产品专业推介会
12月6日—9日,第一届中国(佛山)国际氢能与燃料电池技术及产品推介会在佛山市南海区千灯湖市民广场举行。
推介会展馆由氢产业馆、综合馆及氢动力户外展区组成,展出面积超过10000平方米,参展商超过150家,共吸引中车四方、上汽大通、丰田等国内外知名企业和北京航天试验技术研究所、中国船舶重工集团公司第七一八研究所等研发机构参展。
本次展示范围涵盖制氢设备技术与氢气供应、氢气储运及相关设备、燃料电池系统、燃料电池关键部件及供应技术、评估、测试、分析仪器、氢气应用技术及设备、燃料电池汽车、氢产品与健康医疗设备技术等国内外氢能与燃料电池上下游企业前沿技术与高端产品。
氢产业, 全产业链展示 前沿技术与 高端产品
氢产业馆展出面积4500平方米,参展商近80家。主要展示9SSL质子交换膜模块、氢燃料电池、甲醇燃料电池备用电源系统、备用电源等技术与产品。馆内搭建氢听剧场,多家参展商将在此发布自家创新产品、前沿技术,与前来参观的行业人士分享经验技术。
氢产业馆内设有独立展示佛山氢产业发展情况的“佛山馆”。佛山馆占地200平方米,分“佛山:氢能人的理想家园”“佛山南海·广东新能源汽车产业基地”和“佛山(云浮)产业转移工业园”三部分展示。
近年来,佛山市委、市政府把培育发展氢能和燃料电池技术提高到战略性新兴产业的高度,市长亲自挂帅建立全市氢能产业发展暨氢能源汽车示范推广工作联席会议制度,研究制定《佛山市氢能源产业发展规划》,加快推动氢能源汽车示范推广、加氢站规划建设以及氢能产业链培育发展工作,重点依托广东省对口帮扶和产业共建合作平台,抓住国家政策支持和产业发展机遇,前瞻性创新推进氢能全产业链在佛山、云浮两市跨区域协同布局发展,整合建设了佛山南海“广东新能源汽车产业基地”、佛山高明“现代氢能有轨电车修造基地”和佛山(云浮)产业转移工业园氢能产业研发生产基地三大氢能产业基地,在整合构筑氢能与燃料电池产业体系和氢能汽车推广应用方面走在全国前列。
作为佛山氢能产业发展的先锋,南海区积极推动氢能产业发展,出台了《佛山市南海区新能源汽车产业发展规划(2015—2025年)》,明确提出将南海区打造成为国内领先的氢燃料电池汽车研发生产基地。在扶持政策层面,出台了专门针对新能源汽车产业发展的扶持政策,对在南海区从事新能源汽车(含氢能)产业的企业进行扶持,同时引导新能源汽车产业企业向广东新能源汽车产业基地核心区(丹灶)集聚发展。在平台搭建层面,依托产业基地和广顺新能源,致力打造燃料电池及氢源技术国家工程中心华南中心、自润滑流动动力机械技术国家地方联合工程研究中心等多个氢燃料电池产业研发平台,促进研发平台不断高端化。在基地建设层面,在丹灶镇规划了面积8200亩的基地承接新能源汽车和氢能产业的发展,其中一期900亩已基本建设完毕,引入了广顺新能源、广东泰罗斯等企业,研发生产新能源汽车关键零部件、介质压气机、氢气循环泵以及氢燃料电池动力系统总成等核心部件,基地已被广东省政府列为广东省战略性新兴产业区域集聚发展试点区之一,于2014年被省政府认定为广东省第二批战略性新兴产业基地。在推广应用层面,启动科技部和全球环境基金(GEF)/联合国开发计划署(UNDP)“促进中国燃料电池汽车商业化发展项目”佛山项目。
氢生活, 绿色理念引领 健康新时尚
“人没有氧活不了,没有氢活不好”,氢气的广泛使用,不但对人类的能源变革,对环境的改造有着直接的作用,更对生产生活的方方面面,特别是健康医学,包括对糖尿病、心脑血管病乃至癌症的治疗都有着潜移默化的治疗作用。观众可在综合馆体验与生活息息相关的“氢健康”与“氢医疗”的相关产品和技术。
综合馆展出面积2500平方米,参展商近60家。展示内容除燃料电池关键部件、制氢设备技术外,还将集中展示氢健康与氢医疗相关技术。
馆内设有现场科普区,观众可通过宣传片播放、图文介绍、实物展出等形式,了解氢产业在生活中的应用及发展。
氢动力, 氢燃料电池车辆现场展示和试乘
氢燃料电池车作为氢能应用的一个重要领域,本次推介会设置了氢动力户外展区,将展出氢燃料电池汽车9辆、机车1辆,包括中车青岛四方的机车1辆、广东泰罗斯汽车动力系统有限公司的大巴车2辆、上汽大通的宽体轻客FCV80汽车1辆、日本丰田Mirai小轿车1辆、佛山(云浮)产业基地提供的小轿车、物流车、客车等共5辆。本次展示是目前全国展示车辆数量多、车型全的氢燃料电池车辆专业展览。
在氢动力户外展区,观众可以现场聆听参展企业代表讲解氢燃料电池客车的运行原理。
此外,推介会现场设置了现场试乘活动,观众可现场试乘体验上汽大通FCV80汽车。这款汽车是上汽大通汽车有限公司搭载了氢燃料电池的商业宽体轻客,车内设有10—14个座位,可实现430公里的超长续驶里程,FCV80的氢气储存罐可以装下4.4公斤的高压氢气,从0—100%的加氢时间大约是3—5分钟。FCV80作为氢燃料电池汽车,在行驶时十分安静,加速刹车也很平稳,观众届时可到推介会现场试乘体验。
版权归原作者所有,如有侵权请告知,将会第一时间处理
焊接过程中来自焊条、焊剂和空气中的氢气,在高温下被分解成原子状态溶于液态金属中,焊缝冷却时候氢在钢中溶解度急剧下降,由于焊缝冷却很快,氢来不及逸出,留在焊缝金属中,过一段时间后,会在焊缝或者融合区聚集,当聚集到一定程度在焊接应力作用下导致焊缝或者热影响区产生延迟裂纹。