选择特殊符号
选择搜索类型
请输入搜索
中位线是在三角形或梯形中一条特殊的线段,与其所在的三角形或梯形有着特殊的关系。连接三角形的两边中点的线段叫做三角形的中位线。三角形有三条中位线,首尾相接时,每个小三角形面积都等于原三角形的四分之一,这四个三角形都互相全等。
看书
梯形的中位线就是上底与下底的和的一半
巧用“中位线”,构架解题桥梁
三角形"中位线"的性质定理在几何求解题中的应用比较广泛,中考常考.在大多数题目中,"中位线"的组成,大多不是完整地表现出来,需要我们在解题时,能够抓住题目中的已知信息,补全三角形"中位线"的残缺部分,以此作为添加辅助的方法,构造解题桥梁,从而达到快速解题.下面试举几例,以示说明.
巧用“ 中位线”,构架解题桥梁
三角形“中位线”的性质定理在几何求解题中的应用比较广泛,中考常考.在大多数题目中,“中位线”的组成,大多不是完整地表现出来,需要我们在解题时,能够抓住题目中的已知信息,补全三角形“中位线”的残缺部分,以此作为添加辅助的方法,构造解题桥梁,从而达到快速解题.下面试举几例,以示说明.
梯形的中位线等于梯形的上底加下底再除以二,用符号表示是L.
L=(a+b)÷2
已知中位线长度和高,就能求出梯形的面积.
S梯=2Lh÷2=Lh
中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。
如图,四边形ABCD是梯形,AD∥BC,E、F分别是AB、CD边上的中点,求证:EF∥AD,且EF=(AD+BC)/2
证明:
连接AF并延长交BC的延长线于G。
∵AD∥BC
∴∠ADF=∠GCF
∵F是CD的中点
∴DF=FC
∵∠AFD=∠CFG
∴△ADF≌△GCF(ASA)
∴AF=FG,AD=CG
∴F是AG的中点
∵E是AB的中点
∴EF是△ABG的中位线
∴EF∥BG,EF=BG/2=(BC+CG)/2
∴EF=(AD+BC)/2
∵AD∥BC
∴EF∥AD∥BC
如图的梯子。已知梯子每跨一步上升高度
相同,则求内部横杆总长。
题示(做这些题目要注意题目的细节--上升高度相同,即每条横杆都是小梯形的中位线)
如果同学没有掌握技巧,只会死算,那么大多只能做如图的最左的五步梯,可以设未知数解,时间消耗很大,尤其是运气不佳遇到中间或右边的多步梯,X、Y、Z算的都要吐血了。
但是题目做多了,我总结了一个规律,以左图五步梯为例:五根横杆的总长为1/2(30cm+50cm)X5
中图七步梯为例:1/2(40cm+60cm)X7 那么同理,右图九步梯则是1/2(50cm+70cm)X9
总结一下就是1/2(上底+下底)Xn