选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

智能控制理论

智能控制理论,在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。

智能控制理论基本信息

智能控制理论专家系统

专家系统是利用专家知识对专门的或困难的问题进行描述. 用专家系统所构成的专家控制,无论是专家控制系统还是专家控制器,其相对工程费用较高,而且还涉及自动地获取知识困难、无自学能力、知识面太窄等问题. 尽管专家系统在解决复杂的高级推理中获得较为成功的应用,但是专家控制的实际应用相对还是比较少。

查看详情

智能控制理论造价信息

  • 市场价
  • 信息价
  • 询价

智能控制

  • 品种:断路器附件;系列:BW2框架断路器附件;规格:3H型;产品说明:智能控制器/3H型;
  • 北元电器
  • 13%
  • 上海表计电力设备有限公司
  • 2022-12-07
查看价格

智能控制

  • 品种:断路器附件;系列:BW2框架断路器附件;规格:3M;产品说明:智能控制器/3M;
  • 北元电器
  • 13%
  • 上海表计电力设备有限公司
  • 2022-12-07
查看价格

智能控制

  • 品种:断路器附件;系列:BW1框架断路器附件;规格:2M/2000A;产品说明:智能控制器2M/BW1-2000A;
  • 北元电器
  • 13%
  • 上海表计电力设备有限公司
  • 2022-12-07
查看价格

智能控制

  • 品种:断路器附件;系列:BW1框架断路器附件;规格:2H/6300A;产品说明:智能控制器2H/BW1-6300A;
  • 北元电器
  • 13%
  • 上海表计电力设备有限公司
  • 2022-12-07
查看价格

智能控制

  • 品种:断路器附件;系列:BW1框架断路器附件;规格:2M/6300A;产品说明:智能控制器2M/BW1-6300A;
  • 北元电器
  • 13%
  • 上海表计电力设备有限公司
  • 2022-12-07
查看价格

智能控制

  • 广东2022年3季度信息价
  • 电网工程
查看价格

智能控制

  • 广东2021年4季度信息价
  • 电网工程
查看价格

智能控制

  • 广东2020年3季度信息价
  • 电网工程
查看价格

智能控制

  • 广东2020年1季度信息价
  • 电网工程
查看价格

智能控制

  • 广东2019年4季度信息价
  • 电网工程
查看价格

智能控制中心

  • (1)名称:智能控制中心
  • 1台
  • 1
  • ITC、TK-AUDIO、DSPPA
  • 不含税费 | 不含运费
  • 2017-07-06
查看价格

智能控制网关编程服务

  • 智能控制网关编程服务
  • 1台
  • 1
  • 三星
  • 中档
  • 含税费 | 含运费
  • 2020-10-10
查看价格

智能控制系统

  • 智能控制系统
  • 2台
  • 3
  • 中档
  • 不含税费 | 含运费
  • 2022-06-17
查看价格

智能控制

  • 智能控制
  • 49台
  • 1
  • 霍尼韦尔
  • 高档
  • 含税费 | 含运费
  • 2022-02-18
查看价格

智能照明控制

  • 智能照明控制器1.名称:智能照明控制
  • 1个
  • 1
  • 中档
  • 含税费 | 含运费
  • 2020-10-21
查看价格

智能控制理论模糊逻辑

模糊逻辑用模糊语言描述系统,既可以描述应用系统的定量模型也可以描述其定性模型. 模糊逻辑可适用于任意复杂的对象控制. 但在实际应用中模糊逻辑实现简单的应用控制比较容易. 简单控制是指单输入单输出系统(SISO) 或多输入单输出系统(MISO) 的控制. 因为随着输入输出变量的增加,模糊逻辑的推理将变得非常复杂。

遗传算法

遗传算法作为一种非确定的拟自然随机优化工具,具有并行计算、快速寻找全局最优解等特点,它可以和其他技术混合使用,用于智能控制的参数、结构或环境的最优控制。

神经网络

神经网络是利用大量的神经元按一定的拓扑结构和学习调整方法. 它能表示出丰富的特性:并行计算、分布存储、可变结构、高度容错、非线性运算、自我组织、学习或自学习等. 这些特性是人们长期追求和期望的系统特性. 它在智能控制的参数、结构或环境的自适应、自组织、自学习等控制方面具有独特的能力. 神经网络可以和模糊逻辑一样适用于任意复杂对象的控制,但它与模糊逻辑不同的是擅长单输入多输出系统和多输入多输出系统的多变量控制. 在模糊逻辑表示的SIMO 系统和MIMO 系统中,其模糊推理、解模糊过程以及学习控制等功能常用神经网络来实现.模糊神经网络技术和神经模糊逻辑技术:模糊逻辑和神经网络作为智能控制的主要技术已被广泛应用. 两者既有相同性又有不同性. 其相同性为:两者都可作为万能逼近器解决非线性问题,并且两者都可以应用到控制器设计中. 不同的是:模糊逻辑可以利用语言信息描述系统,而神经网络则不行;模糊逻辑应用到控制器设计中,其参数定义有明确的物理意义,因而可提出有效的初始参数选择方法;神经网络的初始参数(如权值等) 只能随机选择. 但在学习方式下,神经网络经过各种训练,其参数设置可以达到满足控制所需的行为. 模糊逻辑和神经网络都是模仿人类大脑的运行机制,可以认为神经网络技术模仿人类大脑的硬件,模糊逻辑技术模仿人类大脑的软件. 根据模糊逻辑和神经网络的各自特点,所结合的技术即为模糊神经网络技术和神经模糊逻辑技术. 模糊逻辑、神经网络和它们混合技术适用于各种学习方式 智能控制的相关技术与控制方式结合或综合交叉结合,构成风格和功能各异的智能控制系统和智能控制器是智能控制技术方法的一个主要特点.2100433B

查看详情

智能控制理论智能控制理论

在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模

型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高 层控 制 是 对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。随着人工智能和计算机技术的发展,已经有可能把自动控制和人工智能以及系统科学中一些有关学科分支(如系统工程、系统学、运筹学、信息论)结合起来,建立一种适用于复杂系统的控制理论和技术。智能控制正是在这种条件下产生的。它是自动控制技术的最新发展阶段,也是用计算机模拟人类智能进行控制的研究领域。1965年,傅京孙首先提出把人工智能的启发式推理规则用于学习控制系统。1985年,在美国首次召开了智能控制学术讨论会。1987年又在美国召开了智能控制的首届国际学术会议,标志着智能控制作为一个新的学科分支得到承认。智能控制具有交叉学科和定量与定性相结合的分析方法和特点。

一个系统如果具有感知环境、不断获得信息以减小不确定性和计划、产生以及执行控制行为的能力,即称为智能控制系统.智能控制技术是在向人脑学习的过程中不断发展起来的,人脑是一个超级智能控制系统,具有实时推理、决策、学习和记忆等功能,能适应各种复杂的控制环境.

智能控制与传统的或常规的控制有密切的关系,不是相互排斥的. 常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题.

1. 传统的自动控制是建立在确定的模型基础上的,而智能控制的研究对象则存在模型严重的不确定性,即模型未知或知之甚少者模型的结构和参数在很大的范围内变动,比如工业过程的病态结构问题、某些干扰的无法预测,致使无法建立其模型,这些问题对基于模型的传统自动控制来说很难解决.

2. 传统的自动控制系统的输入或输出设备与人及外界环境的信息交换很不方便,希望制造出能接受印刷体、图形甚至手写体和口头命令等形式的信息输入装置,能够更加深入而灵活地和系统进行信息交流,同时还要扩大输出装置的能力,能够用文字、图纸、立体形象、语言等形式输出信息. 另外,通常的自动装置不能接受、分析和感知各种看得见、听得着的形象、声音的组合以及外界其它的情况. 为扩大信息通道,就必须给自动装置安上能够以机械方式模拟各种感觉的精确的送音器,即文字、声音、物体识别装置. 可喜的是,近几年计算机及多媒体技术的迅速发展,为智能控制在这一方面的发展提供了物质上的准备,使智能控制变成了多方位“立体”的控制系统.

3. 传统的自动控制系统对控制任务的要求要么使输出量为定值(调节系统) ,要么使输出量跟随期望的运动轨迹(跟随系统) ,因此具有控制任务单一性的特点,而智能控制系统的控制任务可比较复杂,例如在智能机器人系统中,它要求系统对一个复杂的任务具有自动规划和决策的能力,有自动躲避障碍物运动到某一预期目标位置的能力等. 对于这些具有复杂的任务要求的系统,采用智能控制的方式便可以满足.

4. 传统的控制理论对线性问题有较成熟的理论,而对高度非线性的控制对象虽然有一些非线性方法可以利用,但不尽人意. 而智能控制为解决这类复杂的非线性问题找到了一个出路,成为解决这类问题行之有效的途径. 工业过程智能控制系统除具有上述几个特点外,又有另外一些特点,如被控对象往往是动态的,而且控制系统在线运动,一般要求有较高的实时响应速度等,恰恰是这些特点又决定了它与其它智能控制系统如智能机器人系统、航空航天控制系统、交通运输控制系统等的区别,决定了它的控制方法以及形式的独特之处.

5. 与传统自动控制系统相比,智能控制系统具有足够的关于人的控制策略、被控对象及环境的有关知识以及运用这些知识的能力

6. 与传统自动控制系统相比,智能控制系统能以知识表示的非数学广义模型和以数学表示的混合控制过程,采用开闭环控制和定性及定量控制结合的多模态控制方式.

7. 与传统自动控制系统相比,智能控制系统具有变结构特点,能总体自寻优,具有自适应、自组织、自学习和自协调能力.

8. 与传统自动控制系统相比,智能控制系统有补偿及自修复能力和判断决策能力.

总之,智能控制系统通过智能机自动地完成其目标的控制过程,其智能机可以在熟悉或不熟悉的环境中自动地或人─机交互地完成拟人任务.

智能控制的主要技术方法

智能控制是以控制理论、计算机科学、人工智能、运筹学等学科为基础,扩展了相关的理论和技术,其中应用较多的有模糊逻辑、神经网络、专家系统、遗传算法等理论和自适应控制、自组织控制、自学习控制等技术。

查看详情

智能控制理论常见问题

查看详情

智能控制理论文献

智能控制理论结课论文 智能控制理论结课论文

智能控制理论结课论文

格式:pdf

大小:327KB

页数: 10页

用模糊控制实现恒压供水 参考文献: 文献一:基于模糊控制的恒压供水研究 中图分类号 : TU991 文献标识码 : A 文章编号 : 1672- 9900(2007)04- 0028- 03 总结: 由于供水系统的管网和水泵存在着非线性、多变量等特性 , 而且 相间有交叉耦合 , 很难建立精确的数学模型。如果采用常规的 PID 算控制 ,往往难以得到较理想的静动态特性。采用模糊逻辑控制的方 法对水压进行控制 , 可以达到良好的控制性能。模糊控制器结构如图 1 示。采用双输入单输出的形式 , 以水压给定值 SP 和实际水压测量 值 PV 的误差 e( e=SP- PV) 及误差变化率 ec( ec=de/dt) 作为糊控 制器的输入量 , 经模糊化后分别得到模糊量 E 和 EC, 并分别用模 糊语言加以描述 , 建立输入和输出之间的模糊控制规则。 如果用 PLC 进行在线模糊推理 ,

智能控制理论基础实验报告 智能控制理论基础实验报告

智能控制理论基础实验报告

格式:pdf

大小:327KB

页数: 11页

1 北京科技大学 智能控制理论基础实验报告 学 院 专业班级 姓 名 学 号 指导教师 成 绩 2014 年 4 月 17日 2 实验一 采用 SIMULINK 的系统仿真 一、实验目的及要求: 1.熟悉 SIMULINK 工作环境及特点 2.掌握线性系统仿真常用基本模块的用法 3.掌握 SIMULINK 的建模与仿真方法 二、实验内容: 1. 了解 SIMULINK 模块库中各子模块基本功能 微分 积分 积分步长延时 状态空间模型 传递函数模型 传输延迟 可变传输延迟 零极点模型 3 直接查询表 函数功能块 MATLAB 函数 S函数(系统函数) 绝对值 点乘 增益 逻辑运算 符号函数 相加点 死区特性 手动开关 继电器特性 饱和特性 开关模块 信号分离模块 信号复合模块 输出端口 示波器模块 输出仿真数据到文件 输出仿真数据到工作空间 4 通过实验熟悉以上模块的使用。 2.

(智能控制理论)

本词条由“科普中国”科学百科词条编写与应用工作项目 审核 。

自动控制理论是自动控制科学的核心。自动控制理论自已经过了三代的发展:第一代为20世纪初开始形成并于50年代在线性代数的数学甚而上发展起来的现代控制理论;第三代为60年代中期即已萌芽,在发展过程中综合了人工智能、自动控制、运筹学、信息论等多学科的最新成果并在此基础上形成的智能控制理论。

中文名
自动控制理论
外文名
Automatic Control Theory
核心
自动控制科学
第一代
20世纪初
第三代
60年代

自动控制系统的分类有多种方法。

①按控制装置类型,可分为常规控制和计算机控制两种。常规控制采用模拟式控制器(见控制仪表),计算机控制采用电子数字计算机。②按有无反馈,可分为闭环控制系统和开环控制系统。

③按设定值是否固定,可分定值控制系统和随动控制系统。定值控制系统的设定值固定不变,控制系统可自动克服扰动的影响,使被控变量保持基本恒定。随动控制系统中设定值是变化的,系统使被控变量随设定值而变化。例如,在化工生产中,要求物料A的流量与另一物料B的流量保持一定的比值,如果物料B的流量是变化的,物料A的流量就必须随之变化,此时物料A的流量控制就属于随动控制类型。

离散控制理论在计算中也有很广泛的应用,例如,开方:

开方公式:X(n 1)=Xn [A/X^(k-1)-Xn]1/k.

例如我们开3次方,即K=3;

公式:X(n 1)=Xn [A/X^2-Xn]1/3

例如,A=5,5在1的3次方和2的3次方之间,X0无论取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0都可以。假如我们取2为初始值:

第一步:2 (5/2x2-2)1/3=1.7=X1

第二步:1.7 (5/1.7x1.7-1.7)1/3=1.71=X3

第三步:1.71 (5/1.71x1.71-1.71)1/3=1.709=X4

第四步:1.709 (5/1.709x1.709-1.709)1/3=1.7099=X5

每计算一次,比上一次多取一位数,计算次数与精确度成正比。取值偏大公式会自动调小,例如第一步和第二步,取值偏小公式会自动调大,例如第三步,第四步。 2100433B

查看详情

智能控制理论及应用内容简介

《智能控制理论及应用》系统地介绍了智能控制的基本概念、理论和主要方法,包括模糊控制、神经网络控制、专家控制系统、免疫控制、仿人智能控制、遗传算法、蚁群算法、基于DNA的软计算等。智能控制是自动控制发展的高级阶段,是人工智能、控制论、系统论、信息论、仿生学、神经生理学、进化计算和计算机等多种学科的高度综合与集成,是一门新兴的边缘交叉学科。《智能控制理论及应用》较多地介绍了这些方法的融合和集成,如模糊神经网络、模糊专家系统、神经专家系统、遗传"para" label-module="para">

《智能控制理论及应用》适合高等院校作为自动化专业、电气及信息类专业本科生和研究生的教材,也可供有关教师和工程技术人员参考。

查看详情

智能控制理论及应用目录

第1章 绪论

1.1 智能控制的发展历史

1.2 智能控制的定义和特点

1.2.1 智能控制的定义

1.2.2 智能控制的特点

1.3 智能控制的结构理论

1.3.1 二元结构论

1.3.2 三元结构论

1.3.3 四元结构论

1.3.4 多元结构或者树形结构

1.4 智能控制与传统控制的关系

1.5 智能控制的研究对象

1.6 智能控制的类型

1.6.1 分级递阶控制系统

1.6.2 专家控制系统

1.6.3 人工神经网络控制系统

1.6.4 模糊控制系统

1.6.5 遗传算法与控制理论相结合

1.6.6 免疫算法控制

1.6.7 仿人智能控制

1.6.8 学习控制系统

1.6.9 混沌控制

1.7 智能控制的应用

1.7.1 智能控制在机器人技术中的应用

1.7.2 智能控制在机械制造中的应用

1.7.3 智能控制在电力电子学研究领域中的应用

1.7.4 智能控制在工业过程中的应用

1.7.5 智能控制在农业生产中的应用

1.7.6 智能控制在广义控制领域中的应用

1.8 本章小结

参考文献

第2章 模糊控制

2.1 模糊控制概述

2.1.1 模糊控制器设计步骤

2.1.2 性能评价

2.1.3 应用领域

2.2 模糊控制的数学基础

2.2.1 语言变量、语言值和规则

2.2.2 模糊集合、模糊规则和模糊推理

2.2.3 解模糊

2.3 一个示范例子的介绍

2.3.1 模糊控制器的输入和输出的选择

2.3.2 把控制知识融入规则中

2.3.3 知识的模糊量化

2.3.4 匹配: 决定用哪一条规则

2.3.5 结论步骤: 确定结论

2.3.6 把结论转换成控制作用

2.3.7 模糊决策的图形描述

2.4 Takagi"para" label-module="para">

2.4.1 Takagi"para" label-module="para">

2.4.2 模糊系统是通用近似器

2.4.3 广义T"para" label-module="para">

2.5 基于MATLAB的智能控制系统设计与仿真

2.5.1 模糊逻辑工具箱

2.5.2 基于MATLAB的模糊控制系统设计与仿真

2.6 模糊系统的非线性分析

2.6.1 模糊控制器的参数化

2.6.2 李雅普诺夫稳定性分析

2.6.3 绝对稳定性和圆判据

2.6.4 稳态跟踪误差的分析

2.6.5 描述函数分析方法

2.6.6 滑模变结构方法

2.6.7 小增益理论

2.6.8 相平面分析法

2.7 热处理系统的温度模糊控制

2.8 本章小结

习题

参考文献

第3章 模糊建模和模糊辨识

第4章 神经网络控制

第5章 模糊神经网络

第6章 专家系统

第7章 遗传算法

第8章 蚁群算法

第9章 DNA计算与基于DNA的软计算

第10章 其他智能控制 2100433B

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639