选择特殊符号
选择搜索类型
请输入搜索
智能型消弧线圈(智能型消弧消谐及过电压保护装置)
发布者:伊诺尔电气-郭
我国城市电网及厂矿企业的中压系统,大部分为中性点不接地(即小电流接地)系统。这种系统在发生单相接地时,电网仍可带故障运行;但当发生单相接地故障,接地电容电流很大时,如果接地电弧发展为间歇性的熄灭与重燃,就会引起弧光接地过电压,危及电气设备的绝缘,给供用电设备造成极大的危害。如果接地电弧不能及时熄灭,就会迅速发展为相间短路,引起线路跳闸,供电中断。采用智能型消弧线圈接地方式,可准确测量电网电容电流,对电网接地电容电流实施快速自动补偿,并可有效地抑制弧光接地过电压危害,减少接地点电流,达到自动熄灭电弧的目的。
保定市伊诺尔电气设备有限公司针对电力系统中性点经消弧线圈接地方式,开发出ENR- XHBZ智能型消弧限压接地补偿装置,主要用于6kV、10kV、35kV电网中,中性点经消弧线圈接地方式;自动跟踪补偿电网电容电流,使之保持于设定参数范围内,消除电网系统内部过电压及谐振过电压,电网发生接地故障时自动报警,具有远动输出口,以便与上位机通讯。本装置的特点是响应速度快、精度高、解决死机等优点,是广大中压配电网络优选的接地电器设备
中性点经消弧线圈接地的电网中,消弧线圈补偿度的大小,对于消弧效果和中性点位移电压有直接影响。所以,确定一个合适的补偿度,对于保证电网安全运行有着十分重要的意义。本文根据调度规程对中性点位移电压的规定,...
阻尼电阻的计算 到目前为止,有关阻尼电阻实用计算资料并不多见,由于消弧线圈在中压电网中应用日益广泛,为了有效的降低中性点位移电压和内部过电压,准确地计算出阻尼电阻是十分必要的。笔者多年采用的阻尼电阻的...
消弧线圈的补偿有三种,即欠补偿、全补偿和过补偿。一般采用过补偿,在特殊情况下采用欠补偿。现对三种补偿方式作出说明: (l)欠补偿。补偿后电感电流小于电容电流,或者说补偿的感抗wL 大于线路容抗1/3w...
消弧线圈参数的整定及选择
消弧线圈参数的整定及选择 摘要:目前国内中压电网中性点接地方式有三种, 即中性点不接地、 经消弧 线圈接地和经电阻接地。接地电容电流超过 10A 的中压电网需加装消弧线圈。 本文结合某座变电站,对消弧线圈的容量选择、参数的整定进行了分析。 关键词:电力系统 消弧线圈 参数整定 1、引言 消弧线圈装设于变压器或发电机的中性点, 是一种铁芯带有空气间隙的可调 电感线圈。当电网发生单相接地故障时, 消弧线圈的电感电流补偿了电网的接地 电容电流,故障电流减小, 有力地限制了电动力、 电流热效应和空气游离等的破 坏作用,减小了故障点形成残留性故障的可能性; 故障点介质绝缘的恢复强度大 于故障相电压的恢复初速度, 因此接地电弧能够彻底熄灭, 补偿电网可在瞬间恢 复正常运行。 中性点经消弧线圈接地方式的主要优点有: 系统发生单相接地故障时可继续 运行,不会中断供电,提高了供电可靠性; 有力地限制了电弧过
消弧线圈的异常工况分析与处理
消弧线圈的异常工况分析与处理 摘要:消弧线圈是电力系统中重要的设备之一, 起着消除接地点电弧的作用, 一旦发生故障将对系统的安全带来极大隐患。基于此,笔者结合多年工作经验, 对消弧线圈常见的异常工况与处理方法进行了总结分析,以供参考。 关键词:消弧线圈异常工况 分析处理 引言 消弧线圈外形与单相变压器相似, 内部是一个带有间隙的铁芯电感线圈, 它是电力系统中重要的电气设备之一, 主要用于中性点不接地的电网中, 当电网 发生间歇性接地或电弧稳定接地时, 通过消弧线圈的电感电流补偿电网的电容电 流,起到熄灭电弧的作用。因此,在对电气设备的日常维护中,必须要对消弧线 圈给予足够的重视,当发现异常工况时要及时采取有效措施,避免事故扩大。 下面,笔者将结合实践经验,谈一下消弧线圈各种异常情况的分析与处 理。 2、油位异常 消弧线圈油标内的油面过低或看不见油位,应视为异常。造成油面过低 的原因有以下几
消弧线圈是灭弧的,是一种带铁芯的电感线圈。它接于变压器(或发电机)的中性点与大地之间,构成消弧线圈接地系统。电力系统输电线路经消弧线圈接地,为小电流接地系统的一种。正常运行时,消弧线圈中无电流通过。而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压,这时流经消弧线圈的电感性电流与单相接地的电容性故障电流相互抵消,使故障电流得到补偿,补偿后的残余电流变得很小,不足以维持电弧,从而自行熄灭。这样,就可使接地故障迅速消除而不致引起过电压。
调气隙式属于随动式补偿系统。其消弧线圈属于动芯式结构,通过移动铁芯改变磁路磁阻达到连续调节电感的目的。然而其调整只能在低电压或无电压情况下进行,其电感调整范围上下限之比为2.5倍。控制系统的电网正常运行情况下将消弧线圈调整至全补偿附近,将约100欧电阻串联在消弧线圈上。用来限制串联谐振过电压,使稳态过电压数值在允许范围内(中性点电位升高小于15%的相电压)。当发生单相接地后,必须在0.2S内将电阻短接实现最佳补偿,否则电阻有爆炸的危险。该产品的主要缺点主要有四条:
1、工作噪音大,可靠性差
动芯式消弧线圈由于其结构有上下运动部件,当高电压实施其上后,振动噪音很大,而且随着使用时间的增长,内部越来越松动,噪音越来越大。串联电阻约3KW,100MΩ。当补偿电流为50A时,需要250KW容量的电阻才能长期工作,所以在接地后,必须迅速切除电阻,否则有爆炸的危险。这就影响到整个装置的可靠性。
2、调节精度差
由于气隙微小的变化都能造成电感较大的变化,电机通过机械部件调气隙的精度远远不够。用液压调节成本太高
3、过电压水平高
在电网正常运行时,消弧线圈处于全补偿状态或接近全补偿状态,虽有串联谐振电阻将稳态谐振过电压限制在允许范围内,但是电网中的各种扰动(大电机投切,非同期合闸,非全相合闸等),使得其瞬态过电压危害较为严重。
4、功率方向型单相接地选线装置不能继续使用
安装该产品后,电网中原有的功率方向型单相接地选线装置不能继续使用
该装置属于随动式补偿系统,它同调气隙式的唯一区别是动芯式消弧线圈用有载调匝式消弧线圈取代,这种消弧线圈是用原先的人工调匝消弧线圈改造而成,即采用有载调节开关改变工作绕组的匝数,达到调节电感的目的。其工作方式同调气隙式完全相同,也是采用串联电阻限制谐振过电压。该装置同调气隙式相比,消除了消弧线圈的高噪音,但是却牺牲了补偿效果,消弧线圈不能连续调节,只能离散的分档调节,补偿效果差,并且同样具有过电压水平高,电网中原有方向型接地选线装置不能使用及串联的电阻存在爆炸的危险等缺点,另外该装置比较零乱,它由四部分设备组成(接地变压器,消弧线圈、电阻箱、控制柜),安装施工比较复杂。
调匝式消弧线圈在电网正常运行时,通过实时测量流过消弧线圈电流的幅值,计算出电网当前方式下的对地电容电流,根据预先设定的最小残流值,由控制器调节有载调压分接头到所需要的补偿档位。当发生接地故障后,补偿接地时的电容电流,使故障点的残流可以限制在设定的范围之内。
主要是在消弧线圈的二次侧并联若干组用可控硅(或真空开关)通断的电容器,用来调节二次侧电容的容抗值。根据阻抗折算原理,调节二次侧容抗值,即可以达到改变一次侧电感电流的要求。
调可控硅式消弧线圈是把高短路阻抗变压器的一次绕组作为工作绕组接入配电网中性点,二次绕组作为控制绕组由2个反向连接的可控硅短接,调节可控硅的导通角由0~180°之间变化,使可控硅的等效阻抗在无穷大至零之间变化,输出的补偿电流就可在零至额定值之间得到连续无极调节。可控硅工作在与电感串联的无电容电路中,其工况既无反峰电压的威胁,又无电流突变的冲击,因此可靠性得到保障。其特点如下:
(1)利用可控硅技术,补偿电流在0~100%额定电流范围内连续无级调节,实现大范围精确补偿,还适应了配电网不同发展时期对其容量的不同需要。
(2)利用短路阻抗作为工作阻抗,伏安特性在0~110%UN范围内保持极佳的线性度,因而可以实现精确补偿。
(3)该消弧线圈属于随调式,不需要装设阻尼电阻,也不会出现串联谐振,既提高了运行的可靠性,又简化了设备。
(4)发生单相接地故障后该消弧线圈最快5ms内输出补偿电流,从而抑制弧光,防止因弧光引起空气电离而造成相间短路;同时它能有效消除相隔时间很短的连续多次的单相接地故障。
(5)成套装置无传动、转动机构,可靠性高,噪音低,运行维护简单。
偏磁式消弧线圈不是采用限制串联谐振过电压的方法。偏磁式消弧线圈采用交流线圈内布置一个磁化铁芯段,通过改变施加直流励磁电流的大小,改变铁芯的磁导,从而达到改变消弧线圈电抗值的目的。即在电网正常运行时,不施加励磁电流,将消弧线圈调谐到远离谐振点的状态,但实时检测电网电容电流的大小,当电网发生单相接地后,瞬时(约20ms)调节消弧线圈实施最佳补偿。
消弧线圈顾名思意就是灭弧的 ,是一种带铁芯的电感线圈。它接于变压器(或发电机)的中性点与大地之间,构成消弧线圈接地系统。电力系统输电线路经消弧线圈接地,为小电流接地系统的一种。正常运行时,消弧线圈中无电流通过。而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压,这时流经消弧线圈的电感性电流与单相接地的电容性故障电流相互抵消,使故障电流得到补偿,补偿后的残余电流变得很小,不足以维持电弧,从而自行熄灭。这样,就可使接地故障迅速消除而不致引起过电压。