选择特殊符号
选择搜索类型
请输入搜索
振弦式转矩传感器 这种传感器可用于测量发动机轴的扭矩。测量时将整个装置用两个套筒卡在被测轴的两个相邻面上(图2)。两个振弦传感器分别跨接在两个套筒的 4个凸柱上。当轴传递扭矩时,轴产生扭转形变,轴的两相邻截面就扭转一个角度,使装在卡筒上的两个振弦传感器中的一个受拉、一个受压。根据虎克定律,在弹性变形范围内,轴的扭转角度是与外加的扭矩成正比的,振弦的伸缩变形也就与外加的扭矩成正比。而振弦的振动频率的平方差与它所受应力成正比,因此可利用测量弦的振动频率的方法来测量轴所承受的扭矩。
早期的压力传感器即采用振弦式。这种传感器的振弦一端固定,另一端连结在弹性感压膜片上。弦的中部装有一块软铁,置于磁铁和线圈构成的激励器的磁场中(图1)。激励器在停止激励时兼作拾振器,或单设拾振器。工作时,振弦在激励器的激励下振动,其振动频率与膜片所受压力的大小有关。拾振器则通过电磁感应获取振动频率信号。振弦振动的激励方式有间歇式和连续式两种。在间歇激励方式中,采用张弛振荡器给出激励脉冲,并通过一个继电器使线圈通电、磁铁吸住弦上的软铁块。激励脉冲停止后,磁铁被松开,使振弦自由振动。此时在线圈中即产生感应电势,其交变频率即为振弦的固有振动频率。连续激励方式又可分为电流法和电磁法。电流法将振弦作为等效的LC回路并联于振荡电路中,使电路以振弦的固有频率振荡。电磁法采用两个装有线圈的磁铁,分别作为激励线圈和拾振线圈。拾振线圈的感应信号被放大后又送至激励线圈去补充振动的能量。为减小传感器非线性对测量精度的影响,需要选择适中的最佳工作频段和设置预应力,或采用在感压膜的两侧各设一根振弦的差动式结构。
早期的压力传感器即采用振弦式。这种传感器的振弦一端固定,另一端连结在弹性感压膜片上。弦的中部装有一块软铁,置于磁铁和线圈构成的激励器的磁场中(图1)。激励器在停止激励时兼作拾振器,或单设拾振器。工作时,振弦在激励器的激励下振动,其振动频率与膜片所受压力的大小有关。拾振器则通过电磁感应获取振动频率信号。振弦振动的激励方式有间歇式和连续式两种。在间歇激励方式中,采用张弛振荡器给出激励脉冲,并通过一个继电器使线圈通电、磁铁吸住弦上的软铁块。激励脉冲停止后,磁铁被松开,使振弦自由振动。此时在线圈中即产生感应电势,其交变频率即为振弦的固有振动频率。连续激励方式又可分为电流法和电磁法。电流法将振弦作为等效的LC回路并联于振荡电路中,使电路以振弦的固有频率振荡。电磁法采用两个装有线圈的磁铁,分别作为激励线圈和拾振线圈。拾振线圈的感应信号被放大后又送至激励线圈去补充振动的能量。为减小传感器非线性对测量精度的影响,需要选择适中的最佳工作频段和设置预应力,或采用在感压膜的两侧各设一根振弦的差动式结构。
在20世纪60年代,汽车上仅有机油压力传感器、油量传感器和水温传感器,它们与仪表或指示灯连接。进入70年代后,为了治理排放,又增加了一些传感器来帮助控制汽车的动力系统,因为同期出现的催化转换器、电子点...
转矩传感器作用是检测扭力杠杆的扭曲程度,转换为电信号来计算扭力杆上的转矩,并将信号传递给EPS控制器。转矩传感器信号反应作用与转向盘上转矩的大小。
这个概念我觉得看怎么理解了,这些传感器应该统属于光学传感器,你所说的三个概念相互之间都有交叉,光栅传感器里面包括,光纤光栅,透射体光栅等,也就是既有光纤的也有光电的,光纤传感器又分为功能型和非功能型,...
振弦的固有振动频率f与拉力T的关系为,式中l为振弦的长度,ρ为单位弦长的质量。振弦的材料与质量直接影响传感器的精度、灵敏度和稳定性。钨丝的性能稳定、硬度、熔点和抗拉强度都很高,是常用的振弦材料。此外,还可用提琴弦、高强度钢丝、钛丝等作为振弦材料。振弦式传感器由振弦、磁铁、夹紧装置和受力机构组成。振弦一端固定、一端连接在受力机构上。利用不同的受力机构可做成测压力、扭矩或加速度等的各种振弦式传感器。
振弦式转矩传感器 这种传感器可用于测量发动机轴的扭矩。测量时将整个装置用两个套筒卡在被测轴的两个相邻面上(图2)。两个振弦传感器分别跨接在两个套筒的 4个凸柱上。当轴传递扭矩时,轴产生扭转形变,轴的两相邻截面就扭转一个角度,使装在卡筒上的两个振弦传感器中的一个受拉、一个受压。根据虎克定律,在弹性变形范围内,轴的扭转角度是与外加的扭矩成正比的,振弦的伸缩变形也就与外加的扭矩成正比。而振弦的振动频率的平方差与它所受应力成正比,因此可利用测量弦的振动频率的方法来测量轴所承受的扭矩。
一种振弦式力传感器的设计与验证
受弦式乐器启发,该文设计了一种振弦式力传感器,以一根恒弹振弦为敏感单元,测量力作用在振弦两端,通过检测振弦固有频率的变化实现力的测量。结构上,振弦的中间位置固定了钕铁硼磁铁,对应的支撑结构上,设计了电磁线圈。线圈由脉冲电信号控制产生脉冲力,实现振弦的自由衰减振动。同时,磁铁与线圈符合法拉第电磁感应原理,线圈中感应出与振弦振动频率相同的衰减振动信号。通过标定,建立了频率与力的函数关系,实现了力的测量。初步实验结果表明,该方法可实现力的测量,在10 N量程范围内,绝对测量精度可达±0.02 N。
功用和原理:振弦式传感器测量单元用于测量振弦式渗压、变形传感器、气压传感器等振弦式仪器的谐振频率和电阻,并转换成相应的物理量显示或输出。
参数设置方法及类型:
按M键4~5秒即进入参数设置界面,↑ 表示向上还有菜单可按“∧”键进入,↓ 表示向下还有菜单可按“∨”键进入。设置类型:
本机地址
传感器数量
传感器类型
输出类型
扫描频率设定
传感器率定值2100433B
采集对象: 振弦式传感器,NTC热敏电阻温度传感器,开关量,模拟量
频率模数(f2): 160~36000
频率精度: 0.01Hz
测温范围: -50~ 125(摄氏度)
测温分辨率: 0.1(摄氏度)
系统容量: 2040只传感器(如需更多,请联系厂家)
采样间隔: 1分钟~31天,可调
存储容量: 3个月/每天测存一次
供电方式: 由现场或基站供电(9V~18V)。其内含镍氢电池,停电后可工作一个月。太阳能电池(选配)
近年来,应工程监测的需要。研发了专为系统集成应用配套的“测量模块”。性能稳定,接口方便。按要求,有并口,TTL电平口,485,232,CAN,USB等接口。有通讯协议。上位机软件可直接对“测量模块”进行测量,设置和定义地址。