随着计量供热技术在中国的大力推行,低温地面辐射供暖在中国民用建筑中逐渐推广。本文介绍了地面辐射供暖系统的形式和特点并对低温地面辐射供暖系统的供热调节方法进行分析和研究。
引言
地暖是一种和传统散热器供暖不同的新型供暖方式,和以对流散热为主的散热器供暖相比,具有室内温度分布均匀、舒适性好、节约能源、易实现分户热计量、维护管理方便等优点。随着计量供热技术在中国的大力推行,以及国家对建筑节能的日益重视,低温地面辐射供暖系统目前在中国民用建筑中逐步受到重视,得到广泛的采用。
在供热系统中,通常把供暖热负荷随室外温度的变化规律作为供热调节的依据。供热调节的目的,在于使供暖用户的散热设备的放热量与用户热负荷的变化规律相适应,以防止供暖热用户出现室温过高或过低。但是,有人实地调查过,有用户采用地暖系统仅过了一个采暖期就要求改为其他采暖方式,原因是房间太冷达不到用户的舒适性要求,有的用户则相反,抱怨房间太热,室温达到26℃以上,而且调节作用也不大,只好开窗子,从而造成了能源的浪费。因此正确分析低温地面辐射供暖系统中出现的问题,尤其是弄清供暖系统的调节过程,对于推广该系统的应用,提高供暖质量有着重要意义。
地暖系统的形式与特点
地暖系统的形式。低温热水地面辐射供暖是将具有一定温度的热水,通入被埋置于地板构造层中的加热盘管,经过构造层的热量传递,使地板表面被加热。被加热的地板表面以辐射散热为主的方式,向室内散热以弥补房间的热损失,达到采暖的目的。
构造层中的加热盘管与建筑构造相结合,根据房间大小可以在一个房间设置一个或几个环路,小的房间也可以几个房间设置一个环路。各环路的供、回水管连接到分集水器下,每个用户的分集水器通过楼内供、回水干管与室外管网相连接。
地板构造层的形式。通常采用的地暖构造层形式为混凝土内埋管式,其主要构造为楼板、保温层、加热管、填充层、找平层和地板表面层。在靠近外墙的地方同时也要加保温层,减少热损失。在底层或首层直接在地面上敷设时,还应加防水层,以免土壤中水分渗人,损坏保温层,降低采暖功率。
地暖系统的特点。由于采暖的机理不同,低温热水地面辐射供暖具有以对流散热为主的散热器采暖所没有的优点和节能效果。
舒适性高。室内地板表面温度均匀,室温由下而上逐渐递减,给人以脚暖头凉的舒适感觉;由于空气对流小,避兔了灰尘的飞扬,室内环境清洁卫生。
节能效果显著。低温地板辐射采暖的室内设汁温度较常规散热器采暖可以降低1℃-3℃。
地面上无任何管道设备,不占用房间和地面有效面积,不仅为用户增加了使用面积,而且美观。
便于调节和控制。只要在分集水器处设置调节或控制装置。就可以方便的进行调节和控制,满足各房间所要求的不同工况。热稳定性好。构造层的混凝土蓄热能力大,因此室温变化缓慢,温度波动比较小。
便于进行分户计量。目前中国采暖收费基本是按采暖建筑面积计费的方法,这种方法存在很多弊病,无论室内温度状况如何,不论室内采暖与否一律平等收费,从而导致能源的极大浪费,最合理的计费方法应该是按照各用户实际用热量来核算。
地暖系统的初调节分析
初调节的必要性
在传统的散热器采暖系统中,初调节是必不可少的,对于地暖系统的初调节更应得到充分重视,在传统系统中,如果初调节不合理,可以通过增大系统流量来弥补,造成大流量小温差运行.这样虽然能够保证系统的稳定性,同时也降低了系统的可调节性。对于地面辐射供暖系统,可调节性是它的一大优点,也是它的根本所在。某一用户的调节或多或少会影响到其他用户,只有做好系统的初调节,才能有效减少既定管网中各用户之间的相互干扰。
系统流量越大,末端用户的室温越高,近端与末端用户的室温偏差越小,水力失调对热力失调的影响越小。供热系统大流量运行是靠提高末端用户流量,抑制近端用户流量的办法来达到消除系统热力工况水平失调的目的。但是大流量运行并没有从根本上消除系统的水力失调,各热用户流量分配不均的问题并没有解决。大流量运行具有以下缺点:降低了用户的自主调节的能力。需要较大的水泵,能耗大,增大初投 资和运行费用。
初调节一般在供热系统正式运行前进行,目的是将各热用户的运行流量调节至理想流量,即满足热用户实际热负荷需求的流量,当供热系统为设计工况时,理想流量即为设计流量。也就是说,初调节主要是解决流量分配不均的问题,如果不进行初调节,则整个供热系统基本上呈现不一致失调,同时系统的总流量一般超过设计的总流量。
初调节方法
手工进行初调节有多种方法,如阻力系数法、预定计划法等,但或因计算工作量大或实地调节工作量大,一般难以实际采用。由于供热系统冷热不均现象普遍存在,近几年来,国内外有关专家和工程技术人员陆续提出了多种初调节方法,如比例法、补偿法、计算机法、模拟分析法、模拟阻力法、温度调节法、自力式调节法及简易快速法等,在实际供热系统中都有操作实施价值,在不同程度上具有简单、方便、准确、可靠等特点。
直接连接地暖系统的调节方法
对于直接连接的地暖系统,设计供回水温差小,规范要求10℃,所以系统的循环水流量比较大。常用的调节方法如下:
质调节的方法。采用此方法时系统始终保持设计流量运行。我们知道,供水温度的改变对地板表面散热量的影响是很大的,以导热系数最小的面层材料地毯来说,管间距为300mm时,供水温度每升高5℃,地板表面散热量增加15W/m2,而导热系数最大的面层材料大理石,管间距为300mm时,供水温度每升高5℃,地板表面散热量增加31.65W/m2,而室温的变化对散热量的变化要求又相对较小,因此采用质调节的方法是可行的。
集中量调节的方法,采用此方法时系统的循环水量随着室外温度的变化而变化,而供水温度保持不变,始终保持设计值。当系统循环流量小于设计循环流量的50%时,曲线的坡度比较大,流量的变化对地板表面散热量的影响明显,而当系统循环流量超过设计流量的50%时,流量的改变对地板表面散热量的影响很小。这说明对于直接连接地面辐射供暖系统,采用量调节的方式,只有在系统循环流量较小的时候才有较好的调节性能,而我们知道,地面辐射供暖系统的供回水温差较小,在热负荷不变的情况下,系统流量所需流量很大,是散热器采暖的2.5倍,因此不建议地面辐射供暖系统采用量调节的方式。
分阶段改变流量的质调节,采用此方法时可以根据室外温度的变化情况,分几个阶段减少循环流量,而在同一阶段内,循环流量维持不变,实行集中质调节。这种调节方法是质调节和量调节的结合,可以吸收两种调节方法的优点,又可以克服两者的缺点,适用于暂时还未推广变速水泵的中小型供热系统。在不同的流量下,供水温度对散热量的影响是不同的,随着流量的减小,这种影响越来越小。那么在调节的时候,我们就应该尽量选择较大的流量。一般将整个供暖期分三个阶段来改变系统循环流量,分阶段改变流量靠多台水泵的并联组合来实现。