举例:古老数字EQ的原理。
这是一个古老的3段EQ,使用“直线路径”。我们把中频提升到2倍,高频提升3倍。这时,函数的作用式就变成了:
Y=1*X(k属于0hz到400hz)
Y=2*X(k属于400hz到2500hz)
Y=3*X(k属于2500hz到无穷)
可以看出,这种EQ调节“有塄有角”,399.9hz振幅还一点不变,到401hz就突然增加2倍。我和朋友写过一个小播放器,就加入了这EQ,产生了魔鬼的声音…………现今的EQ不但拥有“模拟路径”,还拥有渐变的函数作用式。同样的3段EQ,把中频提升到2倍,高频提升3倍,函数图像会变的很圆滑(函数式展开很恐怖,就不细说了):
所示,这个“楼梯”很圆滑,在虽然中频从400hz开始算起,但是从350hz左右就已经开始增加振幅产生渐变的效果。大家可以试试,即便把EQ的高频降低到0,我们依然可以听到一点高频。而且由于采用了“模拟路径”,使频率的分析更准确!更加容易调节。但这两种优化算法比古老EQ更费系统资源。
我们之所以要讲到已经没有用的古老EQ,是因为它更方便人们理解EQ。有些朋友总是问:EQ效果器既然能改变声音的频率,C调的歌调完EQ会不会变成降B??降低bass的低频,bass听起来会不会好像升了一个8度?大家还记得前文提到的“乐音频率”和“声音频率”概念么?我们带着这个概念从古老EQ入手来解释这两个问题。
我们来看古老EQ的公式:Y=r*X(k属于ahz到bhz)。前面已经说过,声音的音高只与“乐音频率”有关。也就是说,想证明EQ效果器能改变声音的频率而不改变音高,只需证明EQ效果器能改变声音频率而不改变乐音频率。
根据乐音频率的定义,它必然是两个同样状态的0点之间时间长度的倒数(第1零点,第3零点)。我们设1点的时刻为t1,3点的时刻为t2。乐音频率f=1/(t2-t1)。我们来证明t1时刻或者t2时刻不发生变化:对于任意一个输入信号“x”有输出信号Y=r*X(k属于ahz到bhz)。在任意t时刻,经过EQ处理的信号可以改变为任意值。但是由于1,3点的X值为0,所以无论我们如何调整EQ参数,Y=r*0=0,所以在1,3点,X值永远等于Y值为0。即所有振幅为0的时刻点经过EQ处理,振幅依然为0,所以第1零点,第3零点之间的时间间隔不随参数变化而变化。
这就是EQ效果器能改变声音频率而不改变音高的原因,所以大家(尤其是初学者)大可放心地使用EQ。其实随着技术的进步,数字EQ的算法也开始变得多种多样。就在这篇稿子即将完成时,又听说有通过任意频点的前后两点前后两点计算斜率(就是该点的速度)来确定频率的新奇高招,但EQ的宗旨不变——只改变千篇一律的音色。声音频率和音乐中440hz等等乐音频率不是一个概念,调低高频音乐不可能没了高声部,bass也不会因为降低低频而消失。